In vivo Detection of Vulnerable Atherosclerotic Plaque by Magnetic Resonance Imaging in a Rabbit Model

Short title: Phinikaridou: In vivo detection of vulnerable plaque by MRI

Alkystis Phinikaridou, PhD *1; Frederick L. Ruberg, MD 2,3; Kevin J. Hallock, PhD 4; Ye Qiao, PhD 1; Ning Hua; BSc 1; Jason Viereck, MD 5; and James A. Hamilton, PhD *1,6

1 Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
2 Section of Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA
3 Department of Radiology, Boston University School of Medicine, Boston, MA
4 Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
5 Department of Neurology, Boston University School of Medicine, Boston, MA
6 Department of Biomedical Engineering, Boston University Boston, MA

* To whom all correspondence should be addressed

700 Albany Street, 3rd Floor, W-302, Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, 02118
Phone: +1-617-638-5048
Fax: +1-617-638-4041
E-mail: jhamilt@bu.edu, alkystisp@gmail.com

Journal Subject Codes: [130] Animal models of human disease; [144] Other arteriosclerosis; [115] Remodeling; [172] Arterial thrombosis
Abstract:

Background - The ability to identify atherosclerotic plaques with a high risk for sudden disruption prior to stroke or myocardial infarction would be of great utility. We used a rabbit model of controlled atherothrombosis to test whether in vivo magnetic resonance imaging (MRI) can noninvasively distinguish between plaques that disrupt after pharmacological triggering (vulnerable) and those that do not (stable).

Methods and Results - Atherosclerosis was induced in male New Zealand White (n=17) rabbits by cholesterol diet and endothelial denudation of the abdominal aorta. After baseline (pre-trigger) MRI with and without gadolinium contrast, the rabbits underwent two pharmacological triggerings to induce atherothrombosis, followed by another MRI 48 hours later (post-triggering). Atherosclerosis was identified by the pre-triggered images in all rabbits, and thrombosis was identified in 9/17 animals (53%) by post-trigger MRI. After sacrifice, 95 plaques were analyzed; 28 (29.5%) had thrombi (vulnerable) and 67 did not (stable) (70.5%). Pre-triggered MRI revealed comparable stenosis in stable and vulnerable plaques, but vulnerable plaques had a larger plaque area (4.8±1.6 versus 3.0±1.0 mm²; P=0.01), vessel area (9.2±3.0 versus. 15.8±4.9 mm²; P=0.01), and higher remodeling ratio (1.16±0.2 versus 0.93±0.2; P=0.01) compared to stable plaques. Furthermore, vulnerable plaques more frequently exhibited: (1) positive remodeling (67.8% versus 22.3%; P=0.01), in which the plaque is hidden within the vessel wall instead of occluding the lumen; and (2) enhanced gadolinium uptake (78.6% versus 20.9%; P=0.01) associated with histological findings of neovascularization, inflammation, and tissue necrosis.

Conclusions - We demonstrate that in vivo MRI at 3.0 Tesla detects features of vulnerable plaques in an animal model of controlled atherothrombosis. These findings suggest that MRI may be used as a non-invasive modality for localization of plaques that are prone to disruption.

Key words - magnetic resonance imaging, atherosclerosis, thrombosis, gadolinium, remodeling
Introduction

Acute coronary syndromes (ACS) such as unstable angina pectoris and myocardial infarction are the leading causes of death in the United States. Histological studies demonstrate that ACS are usually triggered by rupture/erosion of vulnerable atherosclerotic plaques, which results in luminal thrombosis. X-ray angiographic studies, which do not provide information about plaque composition, suggest that the majority of high risk plaques cause less than 50% luminal narrowing. In vivo MRI can estimate the degree of luminal narrowing and identify plaque components. Contrast enhanced MRI (CE-MRI) using gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) has improved the discrimination between the fibrous cap and the lipid core and necrotic core and the visualization of coronary atherosclerosis. Furthermore, dynamic CE-MRI (DCE) has shown that uptake of Gd-DTPA is correlated with neovascularization and inflammation, both of which are increased in vulnerable plaques.

The inability to study thrombotic events and plaque vulnerability prior to atherothrombosis in humans necessitates the use of animal models. The rabbit model of controlled atherothrombosis using an intermittent cholesterol diet followed by pharmacological triggering was introduced by Contatinides et al. and later modified by Abela et al. Recently, we further modified the preparation/dietary protocol and demonstrated that such rabbits develop six out of eight types of plaques classified by the American heart association (AHA) criteria. Importantly, we and others have shown that pharmacologically induced thrombosis occurs in plaques with histological features of vulnerability. In an alternative rabbit model of atherothrombosis, plaques were ruptured after an inflatable balloon was embedded into the plaque. Although these rabbit plaques were histologically similar to human plaques, this model has not yet been used for MRI studies. In contrast, in vivo MR images of thrombosis...
associated with plaque disruption in the rabbit model of pharmacologically induced thrombosis have been reported 23, 24.

In this study, we used the rabbit model of experimentally induced atherothrombosis 20 to explore whether MR images obtained in vivo at 3.0 Tesla could identify plaques prone to disruption.

Methods

Animal model

Atherosclerosis was induced in adult male New Zealand white rabbits (n=24, ~2.8 kg, Charles River Laboratories, MA) as previously described 20. Briefly, rabbits were fed a 1% cholesterol diet (PharmaServe, MA) for 2 weeks prior to and 6 weeks after balloon injury of the abdominal aorta, followed by 4 weeks of normal chow diet (Figure 1). Balloon injury of the aortic wall was performed under general anesthesia [acepromazine (0.75 mg/kg IM), ketamine (35 mg/kg, IM) and xylazine (2.5 mg/kg, IM)]. Pharmacological triggering of thrombosis was induced with Russell’s viper venom (0.15 mg/kg IP; Enzyme Research, IN); an activator of Factor X of the coagulation cascade followed 30 min later by histamine; a vasoconstrictor in rabbits (0.02 mg/kg IV; Sigma-Aldrich, MO). This procedure was performed twice, within 48 h, in each animal, as previously described 18-21, 23, 24. Within 24 h after the post-trigger MRI, the rabbits received heparin (1000 USP units IV, Sigma-Aldrich) to prevent post-mortem blood clotting, and were sacrificed with a bolus injection of sodium pentobarbital (100 mg/kg IV). Subsequently, the aortas were excised and fixed in 10% formalin for histological analysis. Three age- and gender-matched, uninjured rabbits were fed only normal chow diet and used as controls.
Of the 7 rabbits that did not complete the study, 3 died prematurely from respiratory distress, ischemic heart disease, and/or liver failure (data not shown), 2 became anorexic early in the experimental protocol and were returned to normal diet, and 2 rabbits became paralyzed from the waist down after the first pharmacological triggering and were euthanized before the end of the protocol. Histological analysis of these 2 rabbits revealed occlusive thrombosis in the distal aorta (data not shown). Animal studies were performed in accordance with guidelines approved by the Institutional Animal Care and Use Committee of Boston University.

MRI experiments

In vivo MRI experiments were performed on supine rabbits under deep sedation using a 3.0 Tesla Philips Intera Scanner (Philips Medical Systems, OH) and a synergy knee coil with six elements. A pulse oximeter was placed on the ear for cardiac gating. The aorta of atherosclerotic rabbits was imaged before (pre) and 48 h after (post) the first pharmacological triggering (Figure 1). Control rabbits were imaged once. MRI acquisition parameters are listed in Table 1. Un-gated coronal 3D phase contrast MR angiograms (PC-MRA) acquired with a T1-weighted, fast-filed echo sequence were used as scout images. Then 2D T1-weighted black-blood (T1BB) axial images (4 mm) were acquired with a double inversion recovery turbo spin echo sequence and cardiac gating (at every other systolic phase). Subsequently, un-gated axial 3D PC-MRA images were acquired immediately after a bolus injection of Gd-DTPA (0.1 mmol/kg, IV) (Magnevist, Germany). For every axial T1BB slice (4 mm), eight 0.5mm PC-MRA slices were acquired. Finally, post-contrast enhanced (post-CE) T1BB images were acquired 10-15 min after Gd-DTPA injection with parameters identical to those used for the non-contrast enhanced T1BB images.
Plasma lipid and inflammatory marker analysis

Blood samples were collected after overnight fasting from the ear artery at baseline, at the end of the 8-week cholesterol diet, and before triggering. Plasma total cholesterol (TC) and HDL-cholesterol (HDL-C) were measured with enzymatic reaction kits from BioVision (Mountain View, CA) and Wako Chemicals Co. (Richmond, VA), respectively. C-reactive protein (CRP) and plasminogen activator inhibitor-1 (PAI-1) were measured with ELISA kits from Immunology Consultant Laboratory (Newberg, OR) and Molecular Innovations (Southfield, MI), respectively.

Matching of MR images and histological sections

The distances from the aortic renal branches and the iliac bifurcation were used as internal anatomical markers to match the MR images and histological sections 20.

Histology and identification of vulnerable plaques

Transverse cryo-sections (10 μm) were collected throughout the length of the each segment and stained with Masson’s trichrome (Sigma Aldrich) to identify cellular components and thrombi. Disrupted (vulnerable) plaques were defined as those with attached platelet and fibrin-rich thrombi. We have previously demonstrated that thrombosis in this model originates both from rupture of thin cap atheromas (60%) and superficial plaque erosion (40%), which frequently occurred over plaques classified by the AHA as atheromas and fibroatheromas, and rarely over fibrotic plaques 20. Plaques that had no overlying thrombus were defined as non-disrupted (stable).
Analysis of MR images

Because the rabbits developed plaques throughout the region of the aorta that was balloon injured, we performed a slice-by-slice analysis of axial wall images containing stable and vulnerable atherosclerotic plaques. Of the 204 pre-triggered T1BB slices acquired from 17 rabbits, a total of 190 slices, (95 before and 95 after gadolinium administration), and 1520 PC-MRA slices (760 anatomical and 760 flow-encoded) slices were evaluated. 109 T1BB images were excluded from the analysis: 58 because either the T1BB or the PC-MRA slices were of poor image quality (insufficient blood suppression, bad signal-to-noise, motion artifacts) and 51 because the corresponding PC-MRA slices contained side branches that could impair the assessment of the remodeling ratio. Aortic regions containing plaques detected in the pre-triggered MR images were classified into stable and vulnerable, based on the presence of luminal thrombosis seen on the post-triggered T1BB images and the corresponding histopathology. Subsequently, the only the pre-triggered MR images were analyzed using ImageJ (NIH).

Pre-CE T1BB images were used to calculate the plaque area (PA) and the % cross-sectional narrowing (CSN) by manually segmenting the adventitial and luminal contours of the vessel wall. Plaque area was calculated as: \(PA = \text{adventitial area} - \text{lumen area} \) and the CSN as % \(\text{CSN} = \left(\frac{\text{plaque area}}{\text{vessel area}} \right) \times 100 \).

Un-gated 3D PC-MRA images acquired immediately after injection of Gd-DTPA were used to calculate the remodeling ratio (RR) and the % stenosis from flow-compensated/anatomical and flow-encoded images, respectively. In the anatomical images (T1-weighted spoiled-gradient echo) flowing blood appears bright whereas the contrast of stationary tissues depends on the T1 relation times. In flow-encoded images, only flowing spins elicit
signal, and the intensity is proportional to the velocity of flow, whereas stationary tissues are suppressed. It has been shown that spoiled-gradient echo images detect the adventitia/outer region of the vessel wall and that the delineation of this contour becomes improved in contrast-enhanced images \(^{25-27}\). A comparison of the vessel area measured on different MRI images is shown in Table 1 (supplemental data). Thus, at each lesion site, the anatomical images were used to measure the vessel area (VA) for the calculation of the RR, and the corresponding flow-encoded images were used to calculate the unobstructed lumen area (LA) and the % stenosis. The RR and the % stenosis were calculated after correcting for arterial tapering \(^{28}\) and inter-individual variability of arterial size \(^{29}\). The RR was calculated as \(RR = \frac{\text{vessel area}_{\text{lesion}}}{\text{vessel area}_{\text{reference}}}\) (Figure 3A) and the three remodeling categories were defined as previously described \(^{30}\): positive if \(RR > 1.05\), intermediate if \(0.95 < RR \leq 1.05\) and negative if \(RR < 0.95\).

The % stenosis was calculated as: \(\% \text{ stenosis} = 1 - \frac{\text{lumen area}_{\text{lesion}}}{\text{lumen area}_{\text{reference}}}\) * 100.

Because of diffuse vessel wall thickening, the slice with the least amount of plaque was used as a reference site, assuming that it was least affected by the disease (mean values of references: PA = 2.0±0.56 mm\(^2\), VA = 11.0±3.5 mm\(^2\), LA = 7.2±1.5 mm\(^2\) and % CSN = 21.4±6.3).

Post-CE T1BB images were visually compared to the pre-CE T1BB images to evaluate the presence or absence of a circumferential (full ring) or crescent-shape enhancement pattern of the vessel wall. Bright signal from perivascular lymphatics and/or adipose tissue was sometimes visible in the pre-CE T1BB images. To eliminate ambiguities in the evaluation of the enhancement pattern of gadolinium-enhanced images, these regions were outlined on the pre-CE T1BB images and subsequently masked onto the gadolinium-enhanced images.

Statistical Analysis
Analyses were performed using SPSS 11.0 (SPSS Inc). For 2-group comparisons, continuous variables were compared using either a two-sample t-test or a Mann-Whitney nonparametric test after the variables were ranked. Categorical variables were compared using the χ^2 test. Qualitative data are presented as frequencies. Two independent observers (A.P and J.V.) analyzed the pre-CE T1BB images to calculate the plaque area and evaluated the enhancement pattern on the post-CE T1BB images. In addition, two independent observers (A.P. and N.H) analyzed the PC-MRA images to calculate the vessel and lumen areas. Observers (J.V and N.H) were blinded to the MRI and histological findings. The inter-observer variability was assessed by using the inter-class correlation coefficient (ICC) for continuous variables and Cohen’s kappa for categorical variables. Independent predictors of plaque vulnerability were identified by multi-logistic regression analysis after the plaques were categorized as vulnerable and stable. Variables exhibiting statistical significance in the univariate regression (i.e., plaque area, vessel area, remodeling index, presence of gadolinium hyper-enhancement, presence of positive and negative remodeling) were then used in the multi-logistic regression model. Multiple linear regression analysis was used to evaluate the relationship between plasma biomarkers and plaque vulnerability. The sensitivity, specificity, positive and negative predictive values (PPV and NPV), and diagnostic accuracy of the MRI features alone or in combination were calculated. Data are presented as mean ± SD. Probability values of $P<0.05$ were considered significant.

Results

Atherosclerosis and thrombosis can be imaged by MRI
Aortic plaques were located in vivo using the pre-triggered MR images, and the sites of luminal thrombosis were visualized on MR images acquired 48 h after pharmacological triggering. The sites of plaques, plaque disruptions, and thrombosis were validated by the corresponding histological sections. Atherosclerosis was observed in all rabbits and thrombosis occurred in 9/17 (53%) of them. No atherosclerosis was observed in control rabbits. A total of 95 wall segments containing plaques were included in this study, of which 28 (29.5%) showed luminal thrombi and 67 did not (70.5%).

Figure 2 shows representative MR images and histopathology of a plaque that did not disrupt (Figure 2A-C) and a plaque that disrupted after triggering (Figure 2D-F). The pre-triggered image of the stable plaque (Figure 2A) demonstrates an eccentric plaque that did not change in appearance after pharmacological triggering (Figure 2B). The corresponding histological section confirmed the presence of an intact fibrous cap overlaying a lipid-core (Figure 2C). The pre-triggered image of the vulnerable plaque (Figure 2D) shows the plaque, whereas the post-triggered image shows a new mass protruding into the lumen (Figure 2E). The corresponding histology (Figure 2F) revealed the site of plaque rupture and confirmed the presence of an overlying platelet- and fibrin-rich thrombus.

Quantitative MRI and MRA measurements of stable and vulnerable plaques

Plaque area, vessel area and remodeling ratio were significantly larger in vulnerable plaques; however, luminal area, % stenosis and % CSN were similar between the two groups (Table 2). ICC revealed a high inter-observer agreement for the measurements of vessel area (ICC = 0.92, 95% CI = 0.87-0.95) and luminal area (ICC = 0.9, 95% CI = 0.85-0.94), and
moderate inter-observer agreement for the measurement of plaque area (ICC = 0.64, 95% CI = 0.38-0.78).

Vulnerable plaques are associated with positive remodeling

A key finding from the analysis of the pre-triggered images is that the plaques that disrupted after pharmacological triggering frequently exhibited positive remodeling (Figure 3). Pre-triggered PC-MRA images acquired from the same rabbit demonstrate examples of negative and positive remodeling compared to a reference site. The vessel area measured at the site of the stable plaque (Figure 3B) was smaller than that of the reference site (Figure 3D), which is indicative of negative remodeling. In contrast, the vessel area of the vulnerable plaque (Figure 3F) was markedly larger than the reference site, suggestive of positive remodeling. Images of the lumen (Figure 3C, E, G) demonstrate that this example of a stable plaque exhibited a greater extent of stenosis compared to that calculated for the vulnerable plaque. Overall, stable plaques frequently exhibited negative remodeling whereas vulnerable plaques frequently exhibited positive remodeling (Figure 3H). Similar findings were obtained when the frequency of the remodeling types in stable and vulnerable plaques was calculated using T1BB and post-CE T1BB images (Table 2; supplemental data).

Vulnerable plaques show hyperintense enhancement after administration of Gd-DTPA

Another key finding that emerged from the analysis of the pre-triggered MR images is the hyperintense signal associated with vulnerable plaques after administration of Gd-DTPA. A stable plaque that showed mild uptake of Gd-DTPA (Figures 4A, B) had a thick fibrous cap
overlying a lipid-core (Figure 4C). In contrast, vulnerable plaques demonstrated hyperintense circumferential (Figure 4E) or crescent-shaped enhancement (Figure 4H) that extended beyond the plaque. The corresponding histology (Figure 4F, I) confirmed that a thrombus formed after pharmacological triggering and revealed extensive neovessels, in the fibrous cap (Figure 4F; arrow), the intima and the adventitia (Figure 4I; circles). Furthermore, histology revealed degradation of the extracellular matrix and tissue necrosis, two additional contributors of increased gadolinium uptake. Contrast enhancement of the vessel wall was not observed in control rabbits (data not shown).

The frequency of circumferential or crescent-shape enhancement was statistically higher in vulnerable plaques whereas the absence of the hyperintense enhancement was statistically higher in stable plaques (Figure 4J). The Cohen’s kappa statistic (k=0.8) revealed a substantial inter-observer agreement in evaluating the presence or absence of hyperintense enhancement after gadolinium administration.

The MRI features that discriminate stable and vulnerable plaques are shown in Table 3 and Figure 1 (data supplement). The presence of hyper-enhancement on post-CE T1BB images showed the best sensitivity, specificity, PPV, NPV and diagnostic accuracy. The NPV was high (97.6%), indicating accurate detection of stable plaque when the plaque was described by the presence of one of the two features (i.e., positive remodeling or Gd-DTPA enhancement). The PPV was higher for plaques showing both features (positive remodeling and Gd-DTPA enhancement) than for plaques showing only one of these features, providing a high diagnostic accuracy (83.2%) for the detection of vulnerable plaque. The ability of positive remodeling, as calculated from three different types of MRI images, to identify vulnerable plaques is illustrated in Table 3 (supplemental data). The diagnostic accuracy was higher when the remodeling ratio
was calculated using the CE-PCMRA. This suggests that CE-PCMRA images may improve the conspicuity of the outer vessel wall boundary and thereby provide a more accurate determination of the remodeling ratio.

Multi-logistic regression analysis identified the gadolinium hyper-enhancement (\(P=0.01\), Odds ratio=13.46, 95% CI=3.17-57) and increased vessel area (\(P=0.004\), OR=1.36, 95% CI=1.1-1.68) as independent predictors of plaque vulnerability. However, the regression model also showed that positive remodeling had a \(P=0.11\), OR=4.7, 95% CI=0.68-32.65 and negative remodeling had a \(P=0.87\), OR=1.17, 95% CI=0.15-9.13. These results together with the fact that the higher diagnostic accuracy was achieved when both positive remodeling and gadolinium hyper-enhancement were present illustrate the value of multiple measurements to discriminate stable from vulnerable plaque.

Plasma lipids and inflammatory markers were not associated with plaque vulnerability

Measurement of plasma markers indicated the development of an atherogenic and inflammatory milieu under these experimental conditions (supplemental data; Table 4). TC and CRP levels increased whereas PAI-1 levels did not change significantly, in either group of rabbits. Importantly, HDL-C levels decreased after 8-weeks of cholesterol diet and returned to baseline after 4-weeks of normal diet. Despite these changes, there was no statistical difference in these biomarkers between rabbits with or without thrombi at any time point. In addition, multiple linear regression analysis revealed that none of these serum biomarkers was an independent predictor of thrombosis (supplemental data; Table 5).
Discussion

In this study, we employed in vivo MRI to image the rabbit aorta before (pre) and after (post) pharmacological triggering of thrombosis to discriminate vulnerable and stable plaques. After histological classification of the plaques into stable (70.5%) and vulnerable (29.5%) as determined by overlying thrombosis, we examined the MRI characteristics of the plaques in each category using the pre-triggered images. We demonstrate for the first time using in vivo MRI that vulnerable plaques are associated with (1) positive remodeling, in which the plaque remains hidden within the vessel wall instead of occluding the lumen; and (2) a circumferential or crescent-shape hyperintense enhancement pattern after administration of Gd-DTPA, consistent with histological findings of neovascularization, inflammation, and tissue necrosis. The combination of both MRI findings provided a PPV of 87.5%, NPV of 82.3% and diagnostic accuracy of 83.2%. Vulnerability was independent of the degree of stenosis and levels of plasma biomarkers. Regression analysis identified the hyperintense enhancement pattern on the post-CE images and increased vessel wall area as independent predictors of plaque vulnerability.

Several in vivo imaging methods, including MRI, intravascular ultrasound (IVUS), computed tomography, and positron emission tomography have identified features associated with vulnerable plaques as determined by histological findings and/or clinical symptoms. However, these methods have not yet prospectively identified which plaques are likely to cause a cardiovascular event. Studies of human atherothrombosis are particularly challenging because plaque disruption cannot be controlled experimentally. The advantage of our rabbit model is that most types of human plaques can be replicated in the rabbit aorta and plaque disruption can be experimentally controlled.
We found that positive remodeling was frequently associated with vulnerable plaques, whereas negative remodeling was frequently associated with stable plaques. As found for human vulnerable plaques in vivo, the rabbit vulnerable plaques did not cause excessive luminal narrowing and were indistinguishable from stable plaques on the basis of luminal area or degree of stenosis, even though they had a larger plaque area than stable plaques. Positive remodeling has been recognized as a possible mechanism to alleviate luminal narrowing based on histological and in vivo imaging studies. However, only recently the association of positive remodeling with plaque vulnerability has been demonstrated in vivo by IVUS and computed tomography. In previous in vivo MRI studies of patients with subclinical coronary atherosclerosis and of Watanabe hypercholesterolemic rabbits, positive remodeling was observed as an increase in the vessel area, determined by the outer vessel wall contour, with concurrent preservation of the lumen area. Although these studies demonstrated that MRI can detect positive arterial remodeling in the presence of atherosclerosis, they did not quantify remodeling to provide a basis for comparison across subjects. On the other hand, IVUS studies have established standardized cut off values for the classification of arterial remodeling.

Here, we demonstrated for the first time a noninvasive MRI method for classifying arterial remodeling using the cut off values established by IVUS. We have previously demonstrated that positive remodeling was histologically associated with increased lipid content, inflammation, and medial and adventitial degradation in rabbit vulnerable plaques. Furthermore, histological studies of human coronary arteries have suggested that positive remodeling and plaque vulnerability are linked through increased macrophage content and secretion of matrix metalloproteinases, which degrade the extracellular matrix promoting plaque instability. In
contrast, although negative remodeling causes more luminal narrowing, it is associated with human stable plaques.

In our study, the plaque burden assessed by calculating the % CSN was similar between stable and vulnerable plaques. Studies of carotid atherosclerosis have shown that normalized wall index (NWI), which is similar to the % CSN, correlated with complicated carotid plaques, intraplaque hemorrhage (IPH) and plaque rupture. Conversely, another study showed that the degree of atherosclerotic burden was similar between symptomatic and asymptomatic carotid plaques in subjects with unilateral atherosclerotic disease. We believe that these discrepancies might originate from the role of IPH in the natural progression of atherosclerotic disease. The presence of IPH accelerates plaque burden progression and increases the size of the lipid-rich necrotic core in asymptomatic subjects. Furthermore, the later study postulated that the rapid increase of plaque burden in the presence of IPH might occur because the local plaque environment changes too quickly to allow sufficient remodeling of the vessel wall to compensate for the sudden increase of plaque burden. However, in our rabbit model IPH does not occur, which could account for the similar plaque burden found between stable and vulnerable plaque.

We also demonstrated that vulnerable rabbit plaques were associated with increased uptake of Gd-DTPA. Although all plaques showed some enhancement, the majority of vulnerable plaques had either a circumferential or crescent shape hyper-enhancement pattern within the plaque and the surrounding vessel wall. Together with the presence of positive remodeling, this observation demonstrates that plaque vulnerability is more than a localized accumulation of lipids and thinning of the fibrous cap, two widely accepted histological features of plaque vulnerability. Aoki et al. were the first to observe a band of enhancement corresponding to the outer wall,
which was attributed to angiogenesis of the wall itself. Enhancement of the outer rim was minimal in early phases of the disease and gradually increased. Studies of gadolinium-enhancement of the carotids reported excellent contrast between the fibrous cap and the lipid-core at 5-10 min after contrast agent administration \(^10\) and that the uptake of gadolinium plateaus after the first 10 min \(^52\). In our study, we did not intend to use gadolinium to discriminate between plaque components. Our goal was to acquire delayed gadolinium-enhanced images at the plateau-phase and assess the overall uptake of the contrast agent. For this reason a time interval of 10-15 minutes was chosen.

We have previously reported \(^20\) that rabbit vulnerable plaques are characterized by increased histological changes including neovascularization, inflammation, tissue necrosis, and vessel wall disorganization. Therefore, we can attribute the increased uptake of Gd-DTPA reported herein to the presence of these histological changes. Our data are in agreement with previous studies that have demonstrated a correlation between gadolinium uptake and plaque neovascularization, inflammation, endothelial permeability, and fibrosis both in human \(^12, 13, 15-17, 53\) and animal models \(^16, 54\). Although we did not decipher the mechanisms that could account for the circumferential versus the crescent enhancement patterns, we postulate that circumferential enhancement involved a higher extent of the histological changes described above compared to the crescent shape enhancement. Furthermore, we found that stable plaques showed mild enhancement, whereas no enhancement of the aortic wall was observed in control rabbits. Our findings are consistent with previous studies that showed progressive uptake of Gd-DTPA with increasing severity of atherosclerosis both in patients with coronary artery disease \(^14\) and hypercholesterolemic Watanabe rabbits \(^45\) compared to no uptake in healthy subjects and minor uptake in control rabbits.
Although positive remodeling and gadolinium uptake were associated with vulnerable plaques both measurements showed false positive and false negative results. However, it is unlikely that clinical practice will change with one test for vulnerable plaque, with MRI or any other imaging modality. Rather, a combination of tests should be used to provide greater confidence when choosing and/or monitoring therapy. For example, we demonstrated that combining positive remodeling and gadolinium enhancement provided a higher diagnostic accuracy (83.2%) for the detection of vulnerable plaque than either test alone (74-79%).

Study Limitations

One limitation of this rabbit model is the absence of plaque calcification and intraplaque hemorrhage. Although both features have been previously reported when rabbits were fed a similar cholesterol diet for much longer periods (8.5 months to 2 years) than those used in this study, animal mortality was increased because of generalized lipid toxicity.

Another important issue is whether pharmacologically triggered plaque disruption in rabbits reflects spontaneous plaque rupture in humans. Although we and others have shown that pharmacologically induced thrombosis is associated with rabbit plaques that encompass histological features of plaque vulnerability, this methodology is a physiological approximation. Precisely what triggers human plaques to rupture or erode is unknown. Studies of canine and human coronary arteries have suggested that it involves platelet activation and adhesion, and the release of vasoconstriction molecules including thromboxane A2 and serotonin. Therefore, the combination of a procoagulant factor (viper venom) and a vasoconstriction agent (histamine) may be an acceptable
physiological approximation. Furthermore, our accelerated model of atherosclerosis could result in a greater extent of atherosclerosis and a higher percentage of plaque disruption that one would expect in the natural history of atherothrombosis in humans. To this end, the higher percentage of disrupted plaques may alter the positive and negative predictive values of the MRI tests reported herein.

Another limitation of this study is that approximately one-fourth of the MR images were excluded from the analysis due to poor image quality. In our current studies, improved pulse sequences, coil design, and animal positioning during scanning are being utilized. Finally, the contrast-enhanced images were acquired only at 10-15 minutes after administration of Gd-DTPA without the use of DCE protocols that provide quantitative measurements of changes in signal intensity. We are currently exploring DCE imaging to quantify the temporal uptake of Gd-DTPA to: (i) optimize the minimum dosage of gadolinium, (ii) optimize the delay time between administration of gadolinium and image acquisition, (iii) provide a quantitative comparison between stable and vulnerable plaque, and (iv) provide a mechanism associated with gadolinium uptake.

Conclusions

Using a rabbit model of controlled atherothrombosis, we demonstrated that *in vivo* MRI can detect positive remodeling and increased uptake of Gd-DTPA, both of which were associated with vulnerable plaque and provided a high diagnostic accuracy for the discrimination of stable from vulnerable plaque. In contrast, thrombosis was independent of the degree of stenosis and levels of plasma biomarkers. The protocols reported in this study are promising because they are
noninvasive, employed the use of a clinically approved contrast agent, and were performed using a clinical MRI scanner.

Acknowledgments: The authors thank Drs Alexandros Tzatsos and Stephan Anderson for helpful comments during the preparation of this manuscript and Dr. Michael LaValley for assistance with the statistical analysis.

Funding Sources: This project was supported by NIH grant 5P50HL083801 (J.A.H).

Conflict of Interest Disclosures: Dr. James Hamilton has equity in a company (MRVimage) that could commercialize the technology. Boston University has filed a patent application on technology related to the manuscript.

References
2. van der Wal AC, Becker AE, van der Loos C, Das P. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89:36-44.

vessel wall characterization of different atherosclerotic stages in a rabbit model. Invest Radiol. 2007;42:614-621.

<table>
<thead>
<tr>
<th></th>
<th>3D sagittal</th>
<th></th>
<th></th>
<th>Ungated 3D axial</th>
<th></th>
<th></th>
<th>2D axial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC-MRA</td>
<td>PC-MRA</td>
<td>T1BB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slice thickness, mm</td>
<td>1</td>
<td>0.5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-slice gap thickness, mm</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE, ms</td>
<td>3.5</td>
<td>7.4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo Factor</td>
<td>-----</td>
<td>-----</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR, ms</td>
<td>20</td>
<td>17</td>
<td>2 cardiac cycles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flip angle, degrees</td>
<td>15</td>
<td>15</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversion recovery delay, ms</td>
<td>-----</td>
<td>-----</td>
<td>350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black blood pulse thickness, mm</td>
<td>-----</td>
<td>-----</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow velocity, cm/s</td>
<td>75</td>
<td>75</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field of view, mm (AP,FH,RL)</td>
<td>25x300x150</td>
<td>35x60x50</td>
<td>100x60x125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix</td>
<td>256x244</td>
<td>128x122</td>
<td>384x362</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reconstructed resolution, mm</td>
<td>0.55x0.55x1</td>
<td>0.19x0.19x0.5</td>
<td>0.23x0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of averages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scan time, min</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Quantitative MRI and MRA measurements of stable and vulnerable plaque

<table>
<thead>
<tr>
<th></th>
<th>Stable</th>
<th>Vulnerable</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=67)</td>
<td>(n=28)</td>
<td></td>
</tr>
<tr>
<td>Plaque area, mm²</td>
<td>3.0±1.0</td>
<td>4.8±1.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Vessel area, mm²</td>
<td>9.2±3.0</td>
<td>15.8±4.9</td>
<td>0.01</td>
</tr>
<tr>
<td>Lumen area, mm²</td>
<td>7.0±1.4</td>
<td>7.5±1.2</td>
<td>0.19</td>
</tr>
<tr>
<td>% Stenosis</td>
<td>25.0±17.0</td>
<td>23.0±15.0</td>
<td>0.91</td>
</tr>
<tr>
<td>% Cross-sectional narrowing</td>
<td>39.3±14.3</td>
<td>34.9±11.0</td>
<td>0.16</td>
</tr>
<tr>
<td>Remodeling ratio</td>
<td>0.93±0.2</td>
<td>1.16±0.2</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table 3: MRI features that discriminate stable and vulnerable plaque

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive predictive value (%)</th>
<th>Negative predictive value (%)</th>
<th>Diagnostic Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive remodeling</td>
<td>67.8</td>
<td>77.6</td>
<td>55.9</td>
<td>85.2</td>
<td>74.7</td>
</tr>
<tr>
<td>Gadolinium-enhancement</td>
<td>78.5</td>
<td>79.1</td>
<td>61.1</td>
<td>89.8</td>
<td>78.9</td>
</tr>
<tr>
<td>Positive remodeling or</td>
<td>96.4</td>
<td>59.7</td>
<td>50.0</td>
<td>97.6</td>
<td>70.5</td>
</tr>
<tr>
<td>gadolinium-enhancement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive remodeling and</td>
<td>50.0</td>
<td>97.0</td>
<td>87.5</td>
<td>82.3</td>
<td>83.2</td>
</tr>
<tr>
<td>gadolinium-enhancement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure Legends:

Figure 1: Experimental timeline. Rabbits were fed a 1% cholesterol diet for 2 weeks before and 6 weeks after balloon injury of the abdominal aorta, followed by 4 weeks of normal chow diet. *In vivo* MRI of the rabbit aorta is performed before (pre-trigger) and after the second (post-trigger) pharmacological triggering. Plasma biomarkers were also monitored at baseline, after 8 weeks of cholesterol diet and before triggering.

Figure 2: *In vivo* T1-weighted, black-blood images and histopathology of stable and vulnerable plaques before and after pharmacological triggering (magnified views are provided at the bottom right of each pane). The stable plaque appeared similar on the pre-trigger (A) and (B) post-trigger images. C, Corresponding histology showed a thick fibrous cap over a lipid core. D, Vulnerable plaque that formed a luminal thrombus after triggering (E; asterisk). F, Corresponding Masson’s trichrome staining revealed the site of rupture (arrow) and confirmed the presence of a platelet and fibrin-rich thrombus.

Figure 3: Examples of negative and positive remodeling in stable and vulnerable plaques. A, Types of vessel wall remodeling. The area circumscribed by the adventitial contour (blue line) indicates the vessel area. The remodeling ratio = vessel area lesion site/ vessel area reference. The reference site is the site with the least amount of plaque. Positive and negative remodeling are defined from the remodeling ratio as shown. B to G, Examples of negative and positive remodeling in a stable (B to C) and a vulnerable (F to G) plaque compared to a reference site (D to E). B, D, F, Flow-compensated images acquired with gadolinium showed negative remodeling
at the site of a stable plaque (B) and positive remodeling at the site of a vulnerable plaque (H). C,
E, G, Flow-encoded images show the unobstructed luminal area. H, Frequency of negative,
intermediate, and positive remodeling in stable and vulnerable plaques. Negative remodeling was
significantly greater in stable plaques whereas positive remodeling was significantly greater in
vulnerable plaques. Intermediate remodeling was similar between the two groups. RR:
remodeling ratio, VA: vessel area, LA: luminal area.

Figure 4: Uptake of gadolinium in stable and vulnerable plaques. Pre-triggered T1-weighted
black-blood MR images before (A, D, G) and after (B, E, H) injection of gadolinium-DTPA,
with corresponding histological sections stained with Masson's trichrome (C, F, I). B, Stable
plaque showed a mild enhancement (red arrow). C, Corresponding histology showed a thick
fibrous cap overlaying a lipid core. E, Vulnerable plaque with circumferential enhancement. F,
Histology verified that this was a vulnerable plaque that developed a thrombus after triggering.
Red blood cell filled neovessels (yellow arrow) spanned the fibrous cap underneath the
thrombus. H, Vulnerable plaque with a crescent-enhancement. I, Histology showed a luminal
thrombus (asterisk) and a thin fibrous cap (arrowhead). Yellow circles indicate neovessels in the
tima and adventitia. J, Frequency of the enhancement pattern after injection of gadolinium-
DTPA in stable and vulnerable plaques. The frequency of the presence of circumferential and
crescent-shape enhancement pattern after injection of gadolinium was statistically higher in
vulnerable compared to stable plaques.
Figure 1

Animal Preparation

- 2 wks CHOL + Balloon Injury + 6 wks CHOL + 4 wks normal diet

Blood collection

Pre-trigger MRI & 1st pharmacological triggering *

In vivo MRI experiments

With and without Gd-DTPA

24h

2nd pharmacological triggering

24h

Post-trigger MRI & Sacrifice

*Pharmacological triggering with: Russell’s viper venom & histamine
Figure 2

Stable plaque

Vulnerable plaque

Pre-triggered MRI

Post-triggered MRI

Post-trigger histology

A

B

C

D

E

F

4 cm

Lipid core

Fibrous cap

Rupture site
Figure 3

A. Reference site

Lumen

Positive remodeling (RR > 1.05)

Negative remodeling (RR < 0.95)

B. Flow-compensated

Stable plaque (RR = 0.53, % stenosis = 37.3)

VA = 6.3 mm²

LA = 4.7 mm²

C. Flow-encoded

Vulnerable plaque (RR = 1.88, % stenosis = 13.3)

VA = 11.8 mm²

LA = 7.5 mm²

D. Reference site with minimum plaque

VA = 22.3 mm²

LA = 6.5 mm²

E. 2 mm²

F. 2 mm²

G. 2 mm²

P = 0.01

% of cohort

H.

stable

vulnerable

P = 0.73

P = 0.01

Negative

Intermediate

Positive

P = 0.01

P = 0.73
Figure 4

Stable plaque

<table>
<thead>
<tr>
<th>Pre-triggered w/o gadolinium</th>
<th>Pre-triggered with gadolinium</th>
<th>Post-triggered histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Vulnerable plaque

<table>
<thead>
<tr>
<th>Pre-triggered w/o gadolinium</th>
<th>Pre-triggered with gadolinium</th>
<th>Post-triggered histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
</tbody>
</table>

Vulnerable plaque

<table>
<thead>
<tr>
<th>Pre-triggered w/o gadolinium</th>
<th>Pre-triggered with gadolinium</th>
<th>Post-triggered histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

Bar chart: % of plaques with enhancement after Gd-DTPA

- Stable plaque
- Vulnerable plaque

Legend:
- stable
- vulnerable

Significance:
- $P=0.01$
In vivo Detection of Vulnerable Atherosclerotic Plaque by Magnetic Resonance Imaging in a Rabbit Model
Alkystis Phinikaridou, Frederick L. Ruberg, Kevin J. Hallock, Ye Qiao, Ning Hua, Jason C. Viereck and James A. Hamilton

Circ Cardiovasc Imaging. published online March 1, 2010;
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/early/2010/03/01/CIRCIMAGING.109.918524

Data Supplement (unedited) at:
http://circimaging.ahajournals.org/content/suppl/2010/03/01/CIRCIMAGING.109.918524.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/
In vivo detection of vulnerable atherosclerotic plaque by magnetic resonance imaging in a rabbit model

Phinikaridou et al.

Supplemental Tables

Table 1: Vessel wall area (mm²) measured on different MRI images with and without gadolinium

<table>
<thead>
<tr>
<th>Vessel area</th>
<th>T1BB</th>
<th>CE-T1BB</th>
<th>CE-PC MRA</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stable plaque</td>
<td>9.7±2.4</td>
<td>9.5±2.6</td>
<td>8.2±3.2</td>
<td>0.19</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Vulnerable plaque</td>
<td>12.8±3.0</td>
<td>13.9±4.2</td>
<td>14.6±4.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.9</td>
</tr>
</tbody>
</table>

P: paired student t-test

P1: T1BB vs. CE-T1BB

P2: T1BB vs. CE-PCMRA (spoiled gradient echo-anatomical images)

P3: CE-T1BB vs. CE-PCMRA

T1BB: T1-weighted black blood images, CE-T1BB: contrast-enhanced (gadolinium) T1-weighted black blood images, CE-PCMRA: contrast-enhanced (gadolinium) phase contrast MRA (T1-weighted spoiled gradient echo images).
Table 2: Frequencies of remodeling types in stable and vulnerable plaque assessed using T1BB, CE-T1BB and CE-PCMRA images

<table>
<thead>
<tr>
<th>Remodeling Type</th>
<th>Stable (n=67)</th>
<th>Vulnerable (n=28)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive remodeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1BB images</td>
<td>37 (55.2)</td>
<td>24 (85.7)</td>
<td>0.009</td>
</tr>
<tr>
<td>CE-T1BB</td>
<td>32 (49.2)</td>
<td>23 (76.6)</td>
<td>0.01</td>
</tr>
<tr>
<td>CE-PC MRA</td>
<td>15 (22.3)</td>
<td>19 (67.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>Negative remodeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1BB images</td>
<td>20 (29.8)</td>
<td>1 (3.7)</td>
<td>0.009</td>
</tr>
<tr>
<td>CE-T1BB</td>
<td>12 (17)</td>
<td>3 (10)</td>
<td>0.04</td>
</tr>
<tr>
<td>CE-PC MRA</td>
<td>38 (56.7)</td>
<td>4 (14.2)</td>
<td>0.01</td>
</tr>
<tr>
<td>Intermediate remodeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1BB images</td>
<td>11 (16.4)</td>
<td>3 (10.7)</td>
<td>0.5</td>
</tr>
<tr>
<td>CE-T1BB</td>
<td>21 (32.3)</td>
<td>4 (13.3)</td>
<td>0.05</td>
</tr>
<tr>
<td>CE-PC MRA</td>
<td>14 (20.8)</td>
<td>5 (17.8)</td>
<td>0.73</td>
</tr>
</tbody>
</table>

P: χ^2 test

T1BB: T1-weighted black blood images

CE-T1BB: contrast-enhanced (gadolinium) T1-weighted black blood images

CE-PCMRA: contrast-enhanced (gadolinium) phase contrast MRA images (T1-weighted spoiled gradient echo images).
Table 3: Comparison of positive remodeling in discriminating stable from vulnerable plaque when calculated using three different types of MRI images

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive predictive value</th>
<th>Negative predictive value</th>
<th>Diagnostic accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1BB images</td>
<td>85.7%</td>
<td>44.8%</td>
<td>88.2%</td>
<td>39.3%</td>
<td>56.8%</td>
</tr>
<tr>
<td>CE-T1BB</td>
<td>76.7%</td>
<td>50.8%</td>
<td>41.8%</td>
<td>82.5%</td>
<td>58.9%</td>
</tr>
<tr>
<td>CE-PCMRA</td>
<td>67.8%</td>
<td>77.6%</td>
<td>55.9%</td>
<td>85.2%</td>
<td>74.7%</td>
</tr>
</tbody>
</table>

T1BB: T1-weighted black blood images

CE-T1BB: contrast-enhanced (gadolinium) T1-weighted black blood images

CE-PCMRA: contrast-enhanced (gadolinium) phase contrast MRA images (T1-weighted spoiled gradient echo images).
Table 4: Plasma lipids and inflammatory markers in rabbits without and with thrombosis

<table>
<thead>
<tr>
<th></th>
<th>Rabbits without thrombosis after triggering</th>
<th>Rabbits with thrombosis after triggering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline 8 weeks 4 weeks P1 P2</td>
<td>Baseline 8 weeks 4 weeks P1 P2 P3 P4</td>
</tr>
<tr>
<td></td>
<td>cholesterol normal diet</td>
<td>cholesterol normal diet</td>
</tr>
<tr>
<td>Total</td>
<td>172.0±57.0 632±55 596±107.8 0.01 0.01</td>
<td>162±60 654.2±53.4 475.0±177.4 0.01 0.01</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td>57.5±16.3 37.4±5.9 65.2±13.0 0.03 0.13</td>
<td>63.3±10.7 40.4±8.5 72.0±16.0 0.01 0.11</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>2.7±0.5 6.6±5.8 11.2±5.5 0.17 0.01</td>
<td>3.0±0.8 9.6±5.2 13.1±7.6 0.01 0.01</td>
</tr>
<tr>
<td>CRP (μg/ml)</td>
<td>18.0±4.3 15.7±2.6 17.4±6.4 0.33 0.87</td>
<td>15.7±3.8 17.9±5 20.5±6.7 0.31 0.08</td>
</tr>
</tbody>
</table>

P1 = baseline vs. 8 weeks cholesterol diet, *P2* = baseline vs. 4 weeks normal diet, *P3* = rabbits without thrombosis vs. rabbits with thrombosis at 8 weeks of cholesterol diet, *P4* = rabbits without thrombosis vs. rabbits with thrombosis at 4 weeks of normal diet.
Table 5: Multiple linear regression analysis of serum biomarkers to identify predictors of plaque vulnerability

<table>
<thead>
<tr>
<th>Variables</th>
<th>Odds Ratio</th>
<th>P value</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRP (baseline)</td>
<td>.858</td>
<td>.156</td>
<td>-1.346</td>
<td>2.586</td>
</tr>
<tr>
<td>CRP (8 weeks cholesterol)</td>
<td>.295</td>
<td>.346</td>
<td>-.179</td>
<td>.233</td>
</tr>
<tr>
<td>CRP (4 weeks chow)</td>
<td>.973</td>
<td>.090</td>
<td>-.050</td>
<td>.174</td>
</tr>
<tr>
<td>PAI-1 (baseline)</td>
<td>-.711</td>
<td>.184</td>
<td>-.424</td>
<td>.246</td>
</tr>
<tr>
<td>PAI-1 (8 weeks cholesterol)</td>
<td>-.653</td>
<td>.356</td>
<td>-.667</td>
<td>.518</td>
</tr>
<tr>
<td>PAI-1 (4 weeks chow)</td>
<td>-.996</td>
<td>.138</td>
<td>-.301</td>
<td>.142</td>
</tr>
<tr>
<td>Total cholesterol (baseline)</td>
<td>-.420</td>
<td>.231</td>
<td>-.021</td>
<td>.014</td>
</tr>
<tr>
<td>Total cholesterol (8 weeks cholesterol)</td>
<td>-.258</td>
<td>.316</td>
<td>-.019</td>
<td>.014</td>
</tr>
<tr>
<td>Total cholesterol (4 weeks chow)</td>
<td>-.467</td>
<td>.157</td>
<td>-.006</td>
<td>.003</td>
</tr>
<tr>
<td>HDL-cholesterol (baseline)</td>
<td>.217</td>
<td>.410</td>
<td>-.190</td>
<td>.234</td>
</tr>
<tr>
<td>HDL-cholesterol (8 weeks cholesterol)</td>
<td>.351</td>
<td>.446</td>
<td>-.583</td>
<td>.704</td>
</tr>
<tr>
<td>HDL-cholesterol (4 weeks chow)</td>
<td>.868</td>
<td>.244</td>
<td>-.437</td>
<td>.650</td>
</tr>
</tbody>
</table>
Supplemental Figures

Figure 1: Receiver operating characteristic curve for the MRI features that discriminate stable and vulnerable plaque

Areas under the curves ranging between 0.7-0.8 indicate a fair diagnostic performance of the MRI features in detecting vulnerable plaque.