Relationship Between Measures of Adiposity, Arterial Inflammation, and Subsequent Cardiovascular Events

Amparo L. Figueroa, MD, MPH*; Richard A.P. Takx, MD, MSc, PhD*; Megan H. MacNabb, BA; Amr Abdelbaky, MD; Zachary R. Lavender, BA; Rebecca S. Kaplan, BA; Quynh A. Truong, MD, MPH; Janet Lo, MD; Brian B. Ghoshhajra, MD, MBA; Steven K. Grinspoon, MD; Udo Hoffmann, MD, MPH; Ahmed Tawakol, MD

Background—The objective of this study was to evaluate how different measures of adiposity are related to both arterial inflammation and the risk of subsequent cardiovascular events.

Methods and Results—We included individuals who underwent 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging for oncological evaluation. Subcutaneous adipose tissue (SAT) volume, visceral adipose tissue (VAT) volume, and VAT/SAT ratio were determined. Additionally, body mass index, metabolic syndrome, and aortic 18F-fluorodeoxyglucose uptake (a measure of arterial inflammation) were determined. Subsequent development of cardiovascular disease (CVD) events was adjudicated. The analysis included 415 patients with a median age of 55 (P25–P75: 45–65) and a median body mass index of 26.4 (P25–P75: 23.4–30.9) kg/m2. VAT and SAT volume were significantly higher in obese individuals. VAT volume (r=0.290; P<0.001) and VAT/SAT ratio (r=0.208; P<0.001) were positively correlated with arterial inflammation. Thirty-two subjects experienced a CVD event during a median follow-up of 4 years. Cox proportional hazard models showed that VAT volume and VAT/SAT ratio were associated with CVD events (hazard ratio [95% confidence interval]: 1.15 [1.06–1.25]; P<0.001; 3.60 [1.88–6.92]; P<0.001, respectively). Body mass index, metabolic syndrome, and SAT were not predictive of CVD events.

Conclusions—Measures of visceral fat are positively related to arterial inflammation and are independent predictors of subsequent CVD events. Individuals with higher measures of visceral fat as well as elevated arterial inflammation are at highest risk for subsequent CVD events. The findings suggest that arterial inflammation may explain some of the CVD risk associated with adiposity. (Circ Cardiovasc Imaging. 2016;9:e004043. DOI: 10.1161/CIRCIMAGING.115.004043.)

Key Words: adipose tissue ■ atherosclerosis ■ cardiovascular events ■ obesity ■ positron emission tomography

The increasing prevalence of obesity and the associated complications are a major health concern.1,2 Obesity has been linked to cardiovascular disease (CVD) morbidity and mortality.3–5 However, clinical studies demonstrated that not all obese individuals are at high risk for CVD, and it has been postulated that a subpopulation of obese but metabolically healthy individuals have a reduced risk for CVD.6,7 The metabolic syndrome (MetS) represents a cluster of metabolic abnormalities that are associated with a substantially increased risk of CVD.5,8,9 Traditionally, obesity is determined based on body mass index (BMI) which represents an important predictor of CVD. However, imaging measures of visceral adipose tissue (VAT) explain a greater part of the variation in metabolic risk factors and are more strongly associated with abnormal metabolic profile beyond BMI.10 One potential biological link between VAT and atherosclerosis relates to immune regulation.11,12 Adipocytes and adipocyte-related macrophages release inflammatory cytokines, which induce insulin resistance, endothelial dysfunction, and hypercoagulability, all of which promote atherosclerosis.13–15 Consistent with the proposed inflammatory link, several studies have identified an association between VAT volume and elevated levels of circulating inflammatory biomarkers.16–18 In addition, the ratio between VAT and subcutaneous adipose tissue (SAT), a measure of relative body fat composition, has been associated with increased cardiometabolic risk.19

See Editorial by Dweck and Hyafil
See Clinical Perspective

18F-fluorodeoxyglucose positron emission tomography (FDG-PET) allows for noninvasive evaluation of aortic
Adiposity, Arterial Inflammation, and CVD Events

Figure 1. Flowchart of study design. CT indicates computed tomography; CVD, cardiovascular disease; and PET, positron emission tomography.

Table 1. Baseline Characteristics of Study Subjects

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Full Cohort (n=415)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>55 (45–65)</td>
</tr>
<tr>
<td>Male, %</td>
<td>177 (42.7)</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.4 (23.4–30.9)</td>
</tr>
<tr>
<td>MetS*</td>
<td>63 (30.6)</td>
</tr>
<tr>
<td>Current smoker, %</td>
<td>42 (10.1)</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>35 (8.4)</td>
</tr>
<tr>
<td>Dyslipidemia, %</td>
<td>113 (27.2)</td>
</tr>
<tr>
<td>Statin use, %</td>
<td>78 (18.8)</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>142 (34.2)</td>
</tr>
<tr>
<td>Prior history of cancer</td>
<td>357 (86.0)</td>
</tr>
<tr>
<td>Cardiovascular event, %</td>
<td>32 (7.7)</td>
</tr>
<tr>
<td>Framingham risk score†</td>
<td></td>
</tr>
<tr>
<td>Low (10-y risk <10%)</td>
<td>109 (51.7)</td>
</tr>
<tr>
<td>Medium (10-y risk 10% to 20%)</td>
<td>51 (24.2)</td>
</tr>
<tr>
<td>High (10-y risk >20%)</td>
<td>44 (20.9)</td>
</tr>
</tbody>
</table>

Values are mean (SD), median (P25–P75), or n (%). BMI denotes body mass index; MetS, metabolic syndrome.

*Available in 206 patient.
†Available in 211 patients.
Table 2. Pearson Correlation Between Arterial Inflammation and Adiposity Measures

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Aortic TBR</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>0.313</td>
<td><0.001</td>
</tr>
<tr>
<td>SAT volume</td>
<td>0.162</td>
<td><0.001</td>
</tr>
<tr>
<td>VAT volume</td>
<td>0.290</td>
<td><0.001</td>
</tr>
<tr>
<td>VAT/SAT ratio</td>
<td>0.208</td>
<td><0.001</td>
</tr>
<tr>
<td>VAT<sub>exp</sub></td>
<td>0.180</td>
<td><0.001</td>
</tr>
</tbody>
</table>

SAT indicates subcutaneous adipose tissue; VAT, visceral adipose tissue; and VAT_{exp}, VAT activity–volume product.

VAT FDG measurement could only be performed within the retroperitoneal space, far from intestinal spillover. To obtain VAT standardized uptake value (SUV), a region of interest was drawn within a small region of VAT tissue, anterior to the aorta (as close to the midline as possible). Subsequently, target-to-background ratio (VAT_{TBR}) was calculated by dividing VAT_{SUV} by the venous SUV. Additionally, to derive an approximation of the total biological activity of VAT, the VAT_{SUV} was multiplied by the VAT volume to generate a VAT activity–volume product (VAT_{AVP}).

Imaging Measures of Arterial Inflammation by PET/CT

Analysis of the PET data for arterial activity was performed by a separate investigator (A. Abdelbaky) according to previously described highly reproducible methods. FDG uptake was measured within the ascending aortic wall and superior vena cava as SUV. Subsequently, target-to-background ratio (TBR) was calculated by dividing the average of SUVmax over all axial slices by the venous SUV.

Statistical Analysis

Descriptive data are presented as mean±standard deviation for continuous nonparametric variables, median (percentile 25–percentile 75) for continuous parametric variables, median (percentile 25–percentile 75) for categorical variables. Natural logarithmic transformation was performed to reduce departures from normality of V_{AT}/S_{AT} ratio and VAT_{AVP}. For group comparison of continuous variables, Student’s t test for independent samples was used for parametric in combination with Levene’s test for equality of variances and Mann–Whitney U for nonparametric data. Receiver operating characteristic curves with area under the curve were obtained to compare discriminatory strength of the variables. To assess correlation, Pearson’s correlation was used. Kaplan–Meier estimates of event-free survival (for CVD events) were generated by dichotomizing values above or below median as possible. Subsequently, target-to-background ratio (VAT_{TBR}) was calculated by dividing the average of SUVmax over all axial slices by the venous SUV.

VAT FDG measurement could only be performed within the retroperitoneal space, far from intestinal spillover. To obtain VAT standardized uptake value (SUV), a region of interest was drawn within a small region of VAT tissue, anterior to the aorta (as close to the midline as possible). Subsequently, target-to-background ratio (VAT_{TBR}) was calculated by dividing VAT_{SUV} by the venous SUV. Additionally, to derive an approximation of the total biological activity of VAT, the VAT_{SUV} was multiplied by the VAT volume to generate a VAT activity–volume product (VAT_{AVP}).

Imaging Measures of Arterial Inflammation by PET/CT

Analysis of the PET data for arterial activity was performed by a separate investigator (A. Abdelbaky) according to previously described highly reproducible methods. FDG uptake was measured within the ascending aortic wall and superior vena cava as SUV. Subsequently, target-to-background ratio (TBR) was calculated by dividing the average of SUVmax over all axial slices by the venous SUV.

Statistical Analysis

Descriptive data are presented as mean±standard deviation for continuous nonparametric variables, median (percentile 25–percentile 75) for continuous parametric variables, median (percentile 25–percentile 75) for categorical variables. Natural logarithmic transformation was performed to reduce departures from normality of V_{AT}/S_{AT} ratio and VAT_{AVP}. For group comparison of continuous variables, Student’s t test for independent samples was used for parametric in combination with Levene’s test for equality of variances and Mann–Whitney U for nonparametric data. Receiver operating characteristic curves with area under the curve were obtained to compare discriminatory strength of the variables. To assess correlation, Pearson’s correlation was used. Kaplan–Meier estimates of event-free survival (for CVD events) were generated by dichotomizing values above or below median as possible. Subsequently, target-to-background ratio (VAT_{TBR}) was calculated by dividing the average of SUVmax over all axial slices by the venous SUV.

Table 3. Differences in Clinical Parameters Between Subjects With and Without a CVD Event

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Full Cohort (N=415)</th>
<th>No CVD Event (N=383)</th>
<th>CVD Event (N=32)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>27.5±5.5</td>
<td>27.5±5.5</td>
<td>27.6±4.8</td>
<td>0.863</td>
</tr>
<tr>
<td>SAT volume</td>
<td>104.2±55.4</td>
<td>104.3±55.6</td>
<td>102.7±53.4</td>
<td>0.870</td>
</tr>
<tr>
<td>VAT volume</td>
<td>56.9±37.5</td>
<td>55.2±36.9</td>
<td>76.5±39.8</td>
<td>0.002</td>
</tr>
<tr>
<td>VAT/SAT ratio</td>
<td>0.52 (0.33–0.74)</td>
<td>0.50 (0.31–0.72)</td>
<td>0.69 (0.50–1.16)</td>
<td><0.001</td>
</tr>
<tr>
<td>VAT<sub>exp</sub></td>
<td>31.3 (20.8–49.1)</td>
<td>29.6 (20.4–46.4)</td>
<td>45.8 (33.2–64.6)</td>
<td>0.002</td>
</tr>
<tr>
<td>Aortic TBR</td>
<td>2.0±0.3</td>
<td>2.0±0.3</td>
<td>2.2±0.3</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Data are presented as mean±SD. BMI indicates body mass index; SAT, subcutaneous adipose tissue; TBR, target-to-background ratio; VAT, visceral adipose tissue; and VAT_{exp}, VAT activity–volume product.

Results

We included 415 patients with a median age of 55 (45–65) years and 42.7% males. Baseline characteristics of the study population are shown in Table 1.

BMI and MeTS

Median BMI was 26.4 (23.4–30.9) kg/m² in our population. BMI showed a moderate correlation with aortic TBR (Table 2). Additionally, the components of MeTS were evaluable in 206 (50.4%) patients. MeTS was present in 63 (15.2%) individuals. In patients with MeTS, aortic TBR was significantly elevated (2.1±0.34 versus 2.0±0.29, with versus without MeTS; P=0.034).

SAT Volume

SAT volume was greater in obese individuals (139.5±51.1 versus 68.9±32.9, obese versus nonobese individuals; P<0.0001) and in individuals with MeTS (117.9±58.2 versus 96.6±53.5, with versus without MeTS; P=0.011). No significant difference was observed between genders (107.9±61.4 versus 99.3±45.7, females versus males; P=0.105). Pearson correlation between BMI and SAT volume was significant (r=0.789; P<0.001). We also observed a weak correlation between SAT volume and aortic TBR (r=0.162; P=0.001), which did not remain significant after correcting for VAT volume (r=0.019; P=0.703). VAT and SAT volume were significantly correlated (r=0.504; P<0.001).

VAT Volume

VAT volume was greater in obese individuals (78.9±36.5 versus 34.6±22.4, obese versus nonobese individuals; P<0.0001) and in individuals with MeTS (83.5±40.0 versus 47.6±32.3, with versus without MeTS; P<0.0001). A significant difference was observed in the amount of VAT between genders (46.5±32.2 versus 70.8±39.6, females versus males; P<0.001). Pearson correlation between BMI and VAT volume was significant (r=0.660; P<0.001). A modest correlation was observed between VAT volume and aortic TBR (r=0.290; P<0.001), similar to that between BMI and aortic...
VAT Activity
VAT\textsubscript{AVP} was greater in obese individuals (43.5 [29.5–63.6] versus 22.1 [14.1–30.2], obese versus nonobese individuals; \(P<0.001\)) and in individuals with MetS (50.7 [31.8–65.7] versus 27.4 [16.1–41.0], with versus without MetS; \(P<0.001\)). There was a strong correlation between BMI and VAT\textsubscript{AVP} (\(r=0.639\), \(P<0.001\)) and weaker one between aortic TBR and VAT\textsubscript{AVP} (\(r=0.180\), \(P<0.001\)). VAT\textsubscript{AVP} was more strongly associated with VAT volume (\(r=0.878\), \(P<0.001\)) than to VAT SUV (\(r=-0.234\), \(P<0.001\)).

CVD Events
A total of 32 patients experienced CVD events over a median follow-up of 4 years. Ten patients developed acute coronary syndrome (8 acute myocardial infarctions and 2 unstable angina pectoris), 4 underwent percutaneous coronary revascularization, 7 had a stroke, 1 experienced a transient ischemic attack, 1 underwent carotid revascularization, 5 had new-onset angina pectoris, 3 were diagnosed with peripheral artery disease and underwent peripheral revascularization, and 1 cardiovascular death. Differences in BMI, VAT volume, VAT\textsubscript{AVP}, SAT volume, and aortic TBR between subjects with and without a CVD event are displayed in Table 3. Receiver operating characteristic curve analysis also showed that VAT volume, VAT/SAT ratio, and VAT\textsubscript{AVP} were the strongest discriminators (Figure 2). VAT\textsubscript{AVP} was not found to contain incremental prognostic information with a univariate hazard ratio of 1.10 (95% CI 0.22–5.64) and an area under the curve of 0.51. However, Cox proportional hazard models revealed that VAT volume, VAT/SAT ratio, and VAT\textsubscript{AVP} were significant predictors of subsequent CVD events (HR [95% CI]: 1.15 [1.06–1.25], \(P<0.001\); 3.60 [1.88–6.92], \(P<0.001\); 2.38 [1.39–4.10], \(P<0.001\), respectively). This remained significant after correcting for age, BMI, and aortic TBR (all \(P<0.05\); Table 4). However, neither SAT volume, BMI, nor the presence of MetS predicted CVD (Table 4 and Figure 3). Adjusting for prior history of cancer did not have an effect on the significance of the HRs.

In this study, as previously noted, aortic inflammation (as TBR) was a potent predictor of CVD risk (Table 4). When

Table 4. Predictors of CVD Events Using Univariate and Multivariate Cox Proportional Hazard Models

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Univariate</th>
<th>Age</th>
<th>Sex</th>
<th>FRS</th>
<th>BMI</th>
<th>MetS</th>
<th>Aortic TBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MetS</td>
<td>1.37 (0.67–2.81)</td>
<td>1.07 (0.52–2.20)</td>
<td>1.35 (0.66–2.79)</td>
<td>1.14 (0.54–2.43)</td>
<td>1.39 (0.64–3.00)</td>
<td>NA</td>
<td>1.20 (0.58–2.48)</td>
</tr>
<tr>
<td>BMI</td>
<td>1.01 (0.95–1.07)</td>
<td>1.02 (0.95–1.09)</td>
<td>1.01 (0.95–1.09)</td>
<td>0.99 (0.92–1.07)</td>
<td>NA</td>
<td>1.00 (0.93–1.07)</td>
<td>0.97 (0.91–1.04)</td>
</tr>
<tr>
<td>SAT volume*</td>
<td>1.00 (0.94–1.07)</td>
<td>1.01 (0.94–1.08)</td>
<td>1.00 (0.94–1.07)</td>
<td>1.01 (0.94–1.08)</td>
<td>0.98 (0.89–1.09)</td>
<td>1.00 (0.94–1.07)</td>
<td>0.98 (0.92–1.05)</td>
</tr>
<tr>
<td>VAT volume†</td>
<td>1.15 (1.06–1.25)</td>
<td>1.11 (1.01–1.21)</td>
<td>1.16 (1.07–1.27)</td>
<td>1.07 (0.97–1.18)</td>
<td>1.26 (1.13–1.41)</td>
<td>1.14 (1.04–1.26)</td>
<td>1.12 (1.02–1.22)</td>
</tr>
<tr>
<td>VAT/SAT‡ ratio</td>
<td>3.60 (1.87–6.92)</td>
<td>2.38 (1.16–4.88)</td>
<td>4.13 (2.15–7.96)</td>
<td>2.17 (1.04–4.50)</td>
<td>3.63 (1.89–6.97)</td>
<td>2.98 (1.60–5.56)</td>
<td>3.11 (1.62–5.97)</td>
</tr>
<tr>
<td>VAT\textsubscript{AVP} †</td>
<td>2.38 (1.39–4.10)</td>
<td>1.81 (1.01–3.24)</td>
<td>2.42 (1.41–4.16)</td>
<td>1.78 (0.96–3.29)</td>
<td>4.88 (2.29–10.39)</td>
<td>2.36 (1.32–4.22)</td>
<td>2.11 (1.23–3.61)</td>
</tr>
<tr>
<td>Aortic TBR</td>
<td>7.33 (2.23–24.14)</td>
<td>13.11 (3.62–47.04)</td>
<td>8.09 (2.44–26.89)</td>
<td>5.70 (1.65–19.66)</td>
<td>8.80 (2.44–31.79)</td>
<td>5.52 (1.68–18.14)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Model covariates indicate for which variable the predictor was adjusted. Proportional hazards assumption and assumptions of linearity were meet. BMI indicates body mass index; CI, confidence interval; FRS, Framingham Risk Score; HR, hazard ratio; SAT, subcutaneous adipose tissue; TBR, target-to-background ratio; VAT, visceral adipose tissue; and VAT\textsubscript{AVP}, VAT activity–volume product.

*Per 10 cm\(^{3}\) P<0.05.
†P<0.05.
‡Ln transformed.
evaluating both VAT volume and VAT/SAT ratio in a Cox proportional hazard model, only VAT/SAT ratio was found to be significant (HR [95% CI]: 2.88 [1.30–6.40]; P=0.005). Moreover, we observed that the combination of arterial inflammation and VAT/SAT ratio provided incremental risk discrimination. When individuals were classified according to high versus low VAT/SAT ratio (dichotomized above or below median values) as well as high versus low arterial
inflammation (also dichotomized above or below median values), the subgroup with both high VAT/SAT ratio and high arterial inflammation did substantially worse than the others (Figure 4). Also when evaluating both VAT_{AVP} and VAT/SAT ratio in a Cox proportional hazard model, only VAT/SAT ratio was found to be significant (HR [95% CI]: 2.62 [1.25–5.51]; \(P=0.011 \)).

Discussion

To our knowledge, this study is the first to evaluate the association between measures of VAT, arterial inflammation, and subsequent CVD events. VAT volume, VAT/SAT ratio, and VAT_{AVP} correlated moderately with arterial inflammation, an independent predictor of CVD events.\(^{20} \) Moreover, we observed that VAT volume, VAT/SAT ratio, and VAT_{AVP} were predictors for the occurrence of CVD events, independent of BMI or arterial inflammation. In addition, the observed link between VAT volume and arterial inflammation may explain some but not all of VAT’s association with CVD events.

The relationship of VAT to metabolic complications is independent of the variation in total body fat, and as such, the assessment of CVD risk solely by measurement of BMI may be inadequate.\(^{10,30–32} \) In our study, BMI was not found to be an independent predictor of CVD events. The potential reasons for this are multifold and may be related to the distinct types of fat that might contribute to increased body mass. VAT compared with SAT is more metabolically active and regarded as pathogenic.\(^{33} \) VAT secretes proinflammatory mediators, including IL-6, IL-8, MCP-1, RANTES, MIP-1α, and PAI-1.\(^{34} \) Fontana et al\(^{14} \) detected higher IL-6 levels in the portal vein compared with peripheral artery and also observed a correlation between portal vein IL-6 concentration and systemic C-reactive protein concentrations, thus, providing evidence for a potential mechanistic link between VAT and systemic inflammation which plays an crucial role in the development of atherosclerosis.\(^{35} \) Though VAT_{AVP} was associated with events, it was not found to be independent of VAT/SAT ratio. This finding raises the possibility that the volume of VAT may be more important a predictor of VAT-associated diseases than the activity of VAT. However, it is also worth noting that in this study, VAT activity was measured in only a small region of interest (technical limitations because of spillover of FDG activity from adjacent gut tissue made it infeasible to measure VAT activity throughout the entire VAT volume).

Buccerius et al\(^{36} \) observed a significant correlation between adipose tissue FDG uptake and arterial FDG uptake in 173 patients with atherosclerosis. Further, Christen et al\(^{37} \) demonstrated higher FDG uptake in VAT compared with SAT in humans. In a mouse model exploring the underlying mechanism, they observed higher FDG uptake in stromal tissue, which contain inflammatory cells.\(^{37} \) In concert with the proinflammatory nature of VAT, we found a moderate correlation between VAT volume and arterial inflammation (aortic TBR). Furthermore, in the current study, we found incremental prognostic value in VAT volume even after correcting for aortic TBR, thus suggesting that VAT tissue might predispose to CVD events via mechanisms that extend beyond its link to arterial inflammation.

We furthermore evaluated the relationship between VAT/SAT, arterial inflammation, and CVD events. VAT/SAT ratio reflects the propensity to store fat viscerally relative to subcutaneously. One possible theory is that excess energy is primarily stored in SAT; however, when this depot is dysfunctional, energy can alternatively be stored in VAT.\(^{38} \) In the Framingham Heart Study, VAT/SAT ratio was found to significantly correlate with cardiometabolic risk factors, beyond associations with BMI and VAT.\(^{39} \) In our study, we observed that VAT/SAT ratio had a stronger correlation with VAT than SAT volume. Moreover, we found that VAT/SAT ratio also correlates with arterial inflammation and remained a significant predictor after correcting for Framingham Risk Score, beyond VAT volume.

Several limitations of the study should be noted. First, generalizability might be limited because of the highly selected nature of this patient population (primarily patients who had a prior history of treated cancer) and the relative small number of events. Though, in a previous study, we found that aortic TBR contained prognostic information in both cancer survivors, as well as cancer-naive individuals.\(^{20} \) Second, event adjudication was limited to information contained in the medical records; thus, the possibility of event misclassification exists. Third, prior research demonstrated the optimal time point for the evaluation of FDG uptake in the vascular wall is beyond 60 minutes, and the arterial wall signals may be somewhat suboptimal for assessment of arterial inflammation.\(^{39,40} \) Nonetheless, we and others have previously shown that circulation times, such as those used in this population, still result in tissue FDG uptake that provides an independent predictive value for subsequent CVD events.\(^{20,41} \) Fourth, the data needed to calculate Framingham Risk Score and MetS were available for only half of the population; hence, power to assess associations in that smaller group may have been constrained. However, despite this limitation, VAT/SAT remained a predictor of CVD events.
even in the smaller group who had the available data. Finally, the retrospective and observational design of this study does not allow us to infer causal relations.

In conclusion, we observed that measures of visceral fat mass and metabolism associate with arterial inflammation and predict future CVD events. These findings provide additional evidence for VAT volume and VAT/SAT ratio as imaging biomarkers for CVD risk. Further, the findings suggest that their association with arterial inflammation may explain some of the CVD risk associated with adiposity.

Disclosures
Dr Takx is supported by Van Leersum Grant of the Royal Netherlands Academy of Arts and Sciences. Dr Tawakol is a consultant for Actelion, Amgen, AstraZeneca, and Takeda and received research grants from Actelion, Genentech, and Takeda. Dr Grinspoon is a consultant for and received research grants from TheraTechnologies, Gilead, Amgen, and served as a consultant for Novo Nordisk, BMS, Merck, Navidea, Aileron. All other authors have reported that they have no relationships relevant to the contents of this article to disclose.

References
Obesity is a major health concern because of increased risk of cardiovascular disease. However, not all obese individuals are at high risk for cardiovascular events. Possibly, a subpopulation of obese and metabolically diseased individuals is at highest risk for events, and accurate identification of these patients could allow for better medical management (eg, by reclassification of statin eligibility). In our study, we observed that visceral adipose tissue volume and visceral adipose tissue/subcutaneous adipose tissue ratio both were predictors for the occurrence of CVD events, independent of BMI or arterial inflammation. In addition, a link was observed between visceral adipose tissue volume and arterial inflammation, which could explain part of visceral adipose tissue’s association with cardiovascular events.
Relationship Between Measures of Adiposity, Arterial Inflammation, and Subsequent Cardiovascular Events
Amparo L. Figueroa, Richard A.P. Takx, Megan H. MacNabb, Amr Abdelbaky, Zachary R. Lavender, Rebecca S. Kaplan, Quynh A. Truong, Janet Lo, Brian B. Ghoshhajra, Steven K. Grinspoon, Udo Hoffmann and Ahmed Tawakol

Circ Cardiovasc Imaging, 2016;9:
doi: 10.1161/CIRCIMAGING.115.004043
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/9/4/e004043

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/