Peripheral Arterial Disease

Augmentation of Limb Perfusion and Reversal of Tissue Ischemia Produced by Ultrasound-Mediated Microbubble Cavitation

J. Todd Belcik, RCS, RDCS; Brian H. Mott, MD; Aris Xie, MS; Yan Zhao, MD; Sajeevani Kim, MD; Nathan J. Lindner; Azzdine Ammi, PhD; Joel M. Linden, PhD; Jonathan R. Lindner, MD

Background—Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators.

Methods and Results—Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10⁸ IV). Studies were also performed after inhibiting shear- pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasonic alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A1 receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%–50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb.

Conclusions—Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase. (Circ Cardiovasc Imaging. 2015;8:e002979. DOI: 10.1161/CIRCIMAGING.114.002979.)

Key Words: microbubbles ■ nitric oxide ■ peripheral arterial disease ■ ultrasound

Ultrasound has been used for a wide variety of therapeutic applications. The ability to acutely augment tissue perfusion with ultrasound has led to interest in its use to treat tissue ischemia in cardiovascular disease. Low-frequency (<100 MHz) ultrasound has been shown to produce peripheral and coronary artery dilation in animal models and in humans and to increase tissue perfusion in animal models of limb or myocardial ischemia. Both thermal and nonthermal bioeffects are thought to contribute to ultrasound-mediated vasodilation. The most important nonthermal effect is the convective motion, or microstreaming, that can produce shear-mediated endothelial production of nitric oxide (NO). Over a wide range of frequencies (27 kHz to 1.0 MHz), ultrasound has been shown to promote in vitro endothelial cell NO production in a power-dependent fashion. In the in vivo setting, ultrasound-mediated vasodilation and augmentation in tissue blood flow are reduced, although not completely blocked, by inhibitors of endothelial nitric oxide synthase (eNOS). The presence of gas bodies such as encapsulated microbubble contrast agents within the vasculature can amplify shear-mediated bioeffects. Concentrated wall shear stresses result from stable and inertial cavitation produced by nonlinear oscillation of microbubbles in an acoustic field. High-power ultrasound with microbubbles has been shown to augment capillary perfusion on intravital microscopy and to reduce ischemic damage in a porcine model of acute myocardial infarction presumably through effects on myocardial blood flow. In this study, we sought to quantify the degree...
to which ultrasound’s effects on vascular tone and tissue perfusion in normal and ischemic tissues are influenced by the presence of microbubbles. We also sought to characterize the biological mediators responsible for increased perfusion during microbubble sonification by examining an array of compounds that can mediate vasodilation in response to vascular shear or pressure such as adenosine and the epoxyeicosatrienonic acid family of endothelial hyperpolarizing factors formed from cytochrome P450 metabolism of arachidonic acid.16,17

Methods

Animal Preparation

The study protocol was approved by the Institutional Animal Care and Use Committee at Oregon Health & Science University. Male C57BL/6 mice 8 to 12 weeks of age were studied. Mice were anesthetized with 1.0% to 1.5% inhaled isoflurane. Body temperature was maintained at 37°C with a heating platform. A jugular vein was cannulated for administration of microbubbles. Studies were performed in a subset of mice (n=12) with chronic hindlimb ischemia. Ischemia was produced by unilateral ligation of the distal common iliac artery and the origin of the epigastric artery through a midline abdominal incision, and imaging studies were performed at 21 to 25 days after surgery at a time when flow recovery from endogenous vascular remodeling has completed resulting in a 40% to 50% reduction of resting flow.18

Therapeutic Ultrasound Exposure Protocols

For nonischemic mice, the proximal adductor muscles of the left hindlimb were exposed to therapeutic ultrasound for 10 minutes. The transducers were placed at a fixed distance (3 cm) from the midportion of the muscle using a transverse imaging plane. Ultrasound was performed >10 minutes using harmonic power-Doppler imaging (Sonos 7500; Philips Ultrasound, Andover, MA) at 1.3 MHz, a pulse repetition frequency of 9.3 kHz, and a mechanical index (MI) of either 0.6 or 1.3. For experiments performed with microbubbles, lipid- shielded decalfluorobutane microbubbles with a mean diameter of 2.0 to 2.5 μm were prepared.19 Microbubbles (2×10^10) were suspended in 100 μL of volume and administered over the first minute of ultrasound exposure. The following experimental conditions were tested: (1) intermittent ultrasound (pulsing interval of 5 s) without microbubbles at an MI of 0.6 (n=4) or 1.3 (n=7 each); (2) intermittent ultrasound with microbubbles at an MI of 0.6 or 1.3 (n=4 each); and (3) continuous (frame rate 16 Hz) ultrasound at an MI of 1.3 (n=5). High MI experiments with microbubbles were also performed after inhibiting vasodilator pathways with the following conditions (n=5 for each): (1) inhibiting eNOS with L-nitroarginine methyl ester (L-NAME; Santa Cruz Biotech, Santa Cruz, CA; 75 μg/kg IP 30 minutes before study); (2) inhibiting adenosine A_1-receptors with 4-(2-[7-amino-2-(2-furyl)]1,2,4-triazololo[2,3-a][1,3,5]triazin-5-yl-amino)ethyl)phenol (ZM-241385; Abcam PLC, Cambridge, MA; 50 μg/g IV, 1 hour before study); and (3) inhibiting epoxyeicosatrienoic acids with 14,15-epoxyeicos-5(Z)-enoic acid (EEZE, Cayman Chemical Co, Ann Arbor, MI; 2.5 μg/g IV, 1 hour before study). The effect of using a lower microbubble concentration was also assessed by performing intermittent high MI (1.3) imaging after intravenous injection of 1×10^6 microbubbles (n=4). The acoustic pressure at the focus (corresponding to the mid portion of the muscle) was spatially quantified by a 0.075-mm needle hydrophone (Precision Acoustics) with 500-μm steps in the lateral and elevational direction. For mice with unilateral ischemia, only the ischemic limb was exposed to intermittent ultrasound at an MI of 1.3.

Microvascular Perfusion Imaging

Contrast-enhanced ultrasound perfusion imaging of the proximal hindlimb adductor muscles of the therapeutic ultrasound-exposed and contralateral control limb was performed.20 For nonischemic animals, perfusion imaging was performed only after therapeutic ultrasound exposure and data acquisition was performed between 10 and 15 minutes after completion of therapy. For mice with unilateral hindlimb ischemia, perfusion in both limbs was assessed at baseline 21 to 23 days after arterial ligation, and again after therapeutic ultrasound, which was performed 3 days later so as to minimize the potential effects of baseline perfusion imaging. The nonlinear fundamental signal component from microbubbles was detected using multipulse phase-inversion and amplitude-modulation (Sequoia 512; Siemens Medical Systems, Mountain View, CA) at 7 MHz and an MI of 0.18. Microbubbles were infused at a rate of 1×10^7 per min. Time–intensity data at a frame rate of 5 Hz were acquired after a high-power (MI, 0.98) 5-frame sequence and were fit to the function: $y = A(1 - e^{-\alpha t})$, where y is intensity at time t, A is the plateau intensity representing relative microvascular blood volume, and the rate constant β is the microvessel flux rate.21 Microvascular blood flow (MBF) was quantified by the product of A and β.22

Arterial Dilation

Bilateral femoral artery dimension was measured before and immediately after therapeutic ultrasound exposure in the same mice undergoing perfusion imaging. The femoral artery was imaged with a high-frequency ultrasound imaging system (Vevo-770; VisualSonics, Toronto, Ontario, Canada) at 55 MHz. Bilateral femoral artery diameter was measured using an inner edge-to-edge technique at baseline and on completion of therapeutic ultrasound exposure.

Muscle NO Production and Temperature

Phosphorylation of eNOS was evaluated in muscle samples obtained from within the ultrasound beam (MI, 1.3) with and without microbubbles, and nonexposed muscle (n=5 each). Samples were obtained immediately on completion of postexperiment perfusion imaging. Samples were homogenized in lysis buffer containing 1 mmol/L phenylmethylsulfonyl fluoride, centrifuged, and the supernatant was evaluated for phosphorylated eNOS using an ELISA (PathScan ELISA; Cell Signaling Tech).

Continuous in situ measurements of skeletal muscle NO concentration and temperature were also performed but in a separate group of mice because of the attenuating effect of the catheters on perfusion imaging. Catheters (600-μm tip) housing a theristor and an amperometric electrochemical sensing element (amino-IV; Innovative Instruments, Tampa, FL) were interfaced with an A/D converter (INO-T-II; Innovative Instruments) and calibrated for NO concentration.27 The catheters were inserted into the hindlimb adductor muscles bilaterally. Once measurements reached steady state (=10 minutes), measurements were acquired at baseline and then continuously after starting unilateral intermittent high-power (MI, 1.3) ultrasound with or without microbubbles (n=6 for each condition). In 4 of the animals receiving microbubbles, measurements were continued for 10 minutes after cessation of ultrasound. Intramuscular temperature over the course of the procedure was measured from the same catheters. In 2 additional mice, high-power ultrasound with microbubble was performed after pretreatment with L-NAME (75 mg/kg IP 30 minutes before ultrasound exposure) to verify that signal changes were attributable to changes in NO concentration.

Endothelial Cell NO Production

Murine endothelial cells (SVEC4-10; ATCC, Manassas, VA) were grown to confluence in DMEM supplemented with 10% fetal bovine serum on fibronectin-coated culture dishes. The fluorescent indicator 4,5-diaminofluorescein diacetate (DAF-2; Cayman Chemical Co) was added to the medium, and culture dishes were placed in an inverted position to allow microbubble flotation to the cell surface. Fluorescence intensity was measured by microscopy with a silicone-intensified tube camera (SITE68; Dage-MTI, Michigan City, IN) during brief fluorescent illumination (460–500 nm excitation). Intensity was measured in 8 separate optical fields within the ultrasound sector at baseline and 10 minutes after the following conditions: (1) no ultrasound; (2) ultrasound (PI 5 s, MI, 1.3, 45° incident angle); (3) ultrasound and microbubble (1×10^7 mL^−1).
Histology
In animals not undergoing hindlimb ischemia, mice were recovered after perfusion imaging and muscle samples from all ultrasound and microbubble conditions were obtained from within and outside the ultrasound beam at either 90 minutes after completion of therapeutic ultrasound for evaluating acute effects, or at 3 days after exposure for evaluating inflammatory response (n=3 for each). Immersion fixed and paraffin-embedded sections were stained with hematoxylin and eosin for evidence of vascular rupture, myocyte edema, and inflammatory cell infiltration.

Microbubble Cavitation
Characterization of microbubble cavitation during ultrasound exposure (1.8 MHz) at a MI of 0.6 and 1.3 was assessed by passive cavitation detection. A spherically focused broadband (10 kHz to 20 MHz) hydrophone (Y-107; Sonic Concepts, Inc, Bothell, WA) with a focal depth of 20 mm and a focal width of 0.4 mm was confocally positioned with the therapeutic ultrasound transducer at a 70° relative angle to receive signals from a flow phantom containing microbubbles (1×10⁶ mL⁻¹). Received signals were digitized (25 MHz) and saved in a 4-channel oscilloscope (Waverunner; Teledyne LeCroy, Chestnut Ridge, NY) using sequence mode. Data analysis for 250 exposures for each condition was performed with the Matlab (MathWorks, Natick, MA).

Statistical Analysis
Data are expressed as ±SD unless stated otherwise. D’Agostino and Pearson omnibus test were used to assess data normality. Significance for variance among groups was analyzed using 1-way ANOVA and when significant (P<0.05), post hoc analysis was performed with paired (pre- versus postexposure; treated versus untreated leg) or unpaired (comparisons between treatment groups) Student t test with Bonferroni correction. Non-normally distributed data were analyzed with a Mann–Whitney or Wilcoxon signed-rank test. Correlations were made by linear regression analysis. Comparisons between relationships for NO biosensor data were made by nonpaired Student t test of the individual slopes.

Results
Ultrasound-Mediated Augmentation in Perfusion
The therapeutic ultrasound beam peak rarefractional acoustic pressures for the lateral and elevational dimensions are provided in Figure 1. These data indicate that ≈40% and 80% of the adductor muscle group was exposed to ultrasound when imaging in a transverse plane at an MI of 0.6 and 1.3, respectively.

For nonischemic mice, the mean microvascular blood flux rate (β) and MBF of the adductor muscle group in the
control contralateral limb not exposed to ultrasound was not significantly different between treatment groups (Figure 2). Ten minutes of intermittent or continuous ultrasound exposure without microbubbles produced a significant increase in both β and MBF compared with the contralateral non-exposed limb although the degree of change did not meet statistical significance when ultrasound was delivery continuously. During intermittent ultrasound exposure, both β and MBF were greater in the presence of microbubbles, particularly at the higher acoustic pressure (MI, 1.3). Qualitatively, the increase in perfusion in the muscle was diffusely distributed. There was no evidence for any petechial hemorrhage at the ultrasound exposure site on gross inspection or by histology, nor was there an inflammatory cell infiltration either acutely or at 3 days (Figure I in the Data Supplement). Intermittent high-power (MI, 1.3) exposure of a much lower dose of microbubbles (1×10^6) resulted in a substantial reduction in the degree of flow augmentation, indicating that changes in perfusion are not only pressure related but also microbubble dose related (Figure II in the Data Supplement).

Measurement of femoral artery diameter bilaterally by high-frequency ultrasound could be made pre and post exposure in all but one of the nonischemic mice (assigned to ultrasound at MI of 0.6 with microbubbles). Ultrasound produced femoral artery dilation in all groups, the degree of which tended to be greater in the presence of microbubbles (Figure 3).

Perfusion Augmentation in Ischemic Limbs

In mice with chronic ischemia, baseline adductor muscle perfusion was assessed a mean of 23±3 days after after ligation (Figure 4). Muscle blood flow was reduced by 40% to 50% compared with that in the contralateral control limb, attributable largely to a reduction in β. Three days later, MBF and β measured after exposure to ultrasound (MI, 1.3) with microbubbles was significantly greater than baseline values and was higher than that in the control limb.

Inhibition of the Vascular Effect of Ultrasound and Microbubbles

The contribution of different shear- or pressure-activated vasodilators to the augmentation of perfusion during high-power (MI, 1.3) ultrasound with microbubbles was investigated by inhibition of key vasodilator pathways in nonischemic mice (Figure 5). In the ultrasound-exposed limb, the increase in both MBF and β produced by ultrasound and microbubbles was significantly blunted by inhibition of eNOS with L-NAME. Within the L-NAME treatment group, both β and MBF were still significantly ($P<0.05$) higher in the exposed than in the contralateral control leg, suggesting incomplete inhibition of the vascular effects of ultrasound and microbubble. However, L-NAME did completely abolish femoral arterial dilation (0% increase from pre- to postexposure in both limbs). Neither ZM-241385 nor EEZE significantly reduced postexposure MBF. However, because both ZM-241385 and EEZE MBF produced a small increase, it is likely that other vasodilator mechanisms were still active.

Figure 2. Contrast ultrasound perfusion data from ultrasound-exposed and control contralateral hindlimbs using 2×10^8 microbubble (MB) dosing. **A,** Examples of time–intensity curves from the adductor muscle group obtained after a destructive pulse sequence in a leg after exposure to ultrasound (mechanical index [MI], 1.3) in the presence of MBs and in the contralateral control leg. **B,** Contrast ultrasound frames obtained from select intervals from the curves in **A** (t_o =immediate postdestruction). **C** and **D,** Dot plots with lines representing mean (±SD) of skeletal muscle microvascular blood flux rate (β) and microvascular blood flow (MBF) after each of the experimental conditions for the ultrasound-exposed and contralateral control limb. *$P<0.05$ vs contralateral control limb; †$P=0.05$ vs contralateral control limb; all tests were made by nonparametric analysis.
increase in flow in the control nonexposed limb, the ratio of MBF in the exposed:nonexposed leg was lower than that in animals that did not receive any blocking intervention (11.5±4.1 in controls; 4.8±4.5 for ZM-241385 [P=0.07 versus control]; 5.7±3.6 for EEZE [P=0.10 versus control]).

Ultrasound-Mediated Changes in NO and Temperature

To further characterize whether the presence of microbubbles enhances ultrasound-mediated release of NO, 3 separate experiments were performed. First, NO production by cultured endothelial cells was assessed by DAF-2 chemifluorescence (Figure 6A). Ten minutes of high-power ultrasound (MI, 1.3) exposure resulted in a greater increase in DAF-2 intensity compared with nonexposed time-controlled condition, the extent of which was greater in the presence of microbubbles. Phosphorylation of eNOS in vivo in ultrasound-exposed muscle also showed increased phospho-eNOS in the presence of microbubbles (Figure 6B). Nitric oxide production quantified in vivo by an indwelling electrochemical sensor detected a continuous increase in NO concentration over a 10-minute period of intermittent high-power ultrasound, which was much greater for animals receiving microbubbles (Figure 7A).

In animals pretreated with L-NAME, there were no significant changes in NO concentration during high-power ultrasound exposure of microbubbles. In animals receiving microbubble, production of NO remained elevated without further increase for 10 minutes after cessation of ultrasound ultrasound (Figure 7B). Temperature in the ultrasound-exposed limb increased only slightly in animals receiving microbubbles but not in those without microbubbles (+0.69±0.30 versus −0.10±0.54°C; P=0.01).

Cavitation Detection

Microbubble cavitation was characterized by passive cavitation detection using the 2 different acoustic conditions applied in vivo. The degree of inertial cavitation in these studies was defined as the broad-band signal seen between higher order harmonic peaks (either absolute amplitude or relative to harmonic peaks). A modest amount of inertial cavitation was present at an MI of 0.6 (Figure 8). The degree of inertial cavitation increased substantially when the MI was increased to 1.3.

Discussion

There is growing interest in the use of noninvasive therapeutic ultrasound to augment perfusion in acute or chronic ischemia that occurs in cardiovascular disease. In this study, we have for the first time quantified the degree to which microbubble contrast agents amplify this effect. We have demonstrated that the presence of microbubbles within the microcirculation markedly enhance ultrasound-mediated augmentation in muscle MBF, particularly when ultrasound is administered at high acoustic power. We have also demonstrated that this approach can reverse moderate tissue ischemia in a model of chronic peripheral arterial disease. Flow augmentation with ultrasound and microbubbles appears to be mediated primarily by NO with only minor contributions from other vasodilator pathways.
Part of the beneficial therapeutic effects of ultrasound in tissue repair and healing are thought to be attributable to local effects on perfusion. Accordingly, there has been interest in applying therapeutic ultrasound in ischemic cardiovascular disease. Low-frequency ultrasound has been shown to improve tissue perfusion in animal models of both limb and myocardial ischemia. It has been recently reported that higher frequency (>1.0 MHz) ultrasound used in combination with microbubble contrast agents in porcine models of acute coronary thrombosis reduce myocardial injury and possibly infarct size, even when scaled for human use. Because ultrasound-mediated cavitation of microbubbles at high MI results in their destruction within the vascular compartment, ultrasound was delivered using a pulsing interval that would ensure nearly complete replenishment of microbubbles into skeletal muscle between sequential ultrasound exposures. During high-power ultrasound, the presence of microbubbles increased tissue perfusion in normal muscle by ≈10-fold, which was several times greater than that achieved with ultrasound alone whether administered in a pulsed or continuous fashion. For conditions without microbubbles, we included both intermittent and continuous ultrasound because previous studies demonstrating increases in perfusion with ultrasound alone used high duty factors. Our data indicate that the degree of flow augmentation is dependent on both acoustic pressure amplitude and microbubble concentration. With regards to pressure dependency, our passive cavitation detection data suggest that the greater flow augmentation at the higher MI (1.3) was likely attributable to the greater degree of inertial cavitation.

The high-power ultrasound and high microbubble concentration conditions also produced a significant increase in MBF in animals with chronic hindlimb ischemia, albeit to a lesser extent than in nonischemic mice. Yet, the degree of flow augmentation in ischemic limbs was of sufficient magnitude that MBF exceeded that in the normal contralateral control limb. It is also important to note that because our perfusion imaging protocols generally required 10 to 15 minutes to perform, we are assured that augmentation in flow persists after cessation of therapeutic ultrasound. Previous studies have not been entirely consistent with regards to the duration of the beneficial effects of ultrasound on perfusion and there are likely to be differences in limb skeletal muscle and myocardium. On the basis of previous experience sequentially examining perfusion in ischemic hindlimbs, we did not believe that the baseline perfusion imaging protocol performed 3 days before therapeutic exposure produced any angiogenic response in the ischemic limbs.

Ultrasound has been shown to produce brachial artery dilation in humans. It is not clear whether this occurs from primary effects of ultrasound on the artery or secondary to flow-mediated dilation from ultrasound’s effects on the distal microcirculation, which could reduce distal microvascular resistance. In our study, we found that the presence of microbubble did indeed further augment arterial dilation, but not nearly to the degree to which perfusion was augmented. These data could support the notion that microbubble cavitation is selectively producing effects at the microvascular level, and that large vessel dilation is permissive so as not to provide resistance to downstream flow regulation. However, this supposition may not necessarily be true because vessel resistance is predicted to be related to the fourth power of its radius.
so that small differences in the degree of arterial vasodilation may have been amplified in terms of their effects on distal tissue perfusion.

Our studies were designed to test the mechanisms by which ultrasound cavitation of microbubbles produces changes in flow. Ultrasound exposure of muscle in vivo has been shown to

Figure 6. A, Time-dependent increases in fluorescent intensity from the nitric oxide (NO) indicator 4,5-diamino-fluorescein diacetate (DAF-2) from cultured endothelial cells exposed to ultrasound (US) with and without microbubbles (MBs), and from nonexposed time-controlled cells. B, Phosphorylated endothelial NO synthase (eNOS) by ELISA from control muscle and muscle tissue within the imaging sector in muscle exposed to ultrasound with and without MB injection.

Figure 7. A, Intramuscular nitric oxide (NO) production measured by indwelling electrochemical probe after initiating intermittent ultrasound (US) alone (n=6), intermittent US with microbubbles (MBs; n=6), and intermittent US with MBs and L-nitroarginine methyl ester (L-NAME; n=2). Data are normalized to baseline values. B, Intramuscular electrochemical probe detection of NO production after initiating US with MBs where measurements were continued for 10 minutes after cessation of US (n=4). C, Example of continuous time-dependent NO detection in a limb exposed to ultrasound (mechanical index, 1.3) with MBs and the contralateral control limb. Statistical analysis performed with parametric tests.
result in phosphorylation of eNOS and generation of NO.3,6,10 Inhibition of NOS has been shown to blunt ultrasound’s effect of increasing myocardial perfusion during coronary occlusion.5 Our results with L-NAME suggest that NO is a major but not the only pathway by which microbubble cavitation increases limb perfusion. We also demonstrated that both NO production and eNOS phosphorylation increased incrementally with the addition of microbubbles to high-power ultrasound. These data support the notion that microbubble cavitation acts to potentiate shear-mediated endothelial response. The frequency–amplitude response on passive cavitation detection further supports this notion because increased inertial cavitation produced by the higher MI (1.3) would be expected to produce higher shear, thereby explaining the greater augmentation in flow at the higher acoustic pressure. Although our temperature data suggest that microbubble cavitation produces a thermal effect, the mild degree of heating would not be expected to produce MBF changes to the degree seen.28

Although femoral artery dilation during ultrasound with microbubbles was abolished by L-NAME, the increase in microvascular perfusion was not entirely abolished. This finding suggests that there may be mechanisms other than NO that also contribute to cavitation-related flow augmentation. Through inhibitory studies, we tested the contribution of adenosine and epoxyeicosatrienoic acids which are formed in response to shear.16 Although postexposure flow was not reduced by inhibiting these pathways, baseline flow was higher in these studies so that flow reserve was significantly reduced, particularly with adenosine. It is unclear why baseline blood flow was higher after giving the A2a-receptor antagonist ZM-241385 because this agent has not been shown to affect resting muscle blood flow in the cat.29

There are several limitations of the study that should be mentioned. Although the flow response to microbubble cavitation increases with ultrasound MI, we cannot state with absolute certainty that this effect was from higher pressure rather than a larger territory of muscle coverage. We must also be mindful that contrast ultrasound perfusion imaging was used as an end point and could have affected flow. For this reason, perfusion imaging in nonischemic mice was performed only after therapeutic ultrasound and comparisons were made between the exposed and contralateral nonexposed limb. We think that any effects in the contralateral limb were probably negligible given the minimal change in femoral artery diameter, and because in mice undergoing hindlimb ischemia, no major differences in flow were seen in the contralateral control leg for pre- and postexposure conditions. It should be mentioned that brief high-frequency vascular imaging was used before therapeutic ultrasound exposure. However, these conditions were the same in both the control and the therapeutic ultrasound-exposed limb and we have previously demonstrated that this type of exposure does not substantially alter muscle perfusion. Although we have used 2 drastically different microbubble doses, finer dose ranging studies will be necessary in the future. Finally, in the ischemic limbs, we chose to study only the conditions that were found to produce the greatest results in nonischemic animals.

In summary, for the first time, we have quantified that ultrasound augmentation of limb flow

Figure 8. Frequency–amplitude histograms from passive cavitation detection from microbubbles exposed to ultrasound at mechanical index (MI) of 0.6 or 1.3. Data are averaged from 250 measurements.

CLINICAL PERSPECTIVE

Ultrasound has been used for decades for promoting tissue healing, which is thought to be mediated, in part, through an increase in perfusion. Ultrasound-mediated increases in blood flow are thought to occur as a result of oscillatory shear that is produced in the fluctuating pressures of an ultrasound wave. This effect is likely to be amplified by intravascular microbubble contrast agents that undergo oscillatory vibration in an acoustic field. Ultrasound-mediated augmentation in perfusion may represent an approach for temporary increase in limb perfusion in patients with peripheral artery disease. In this study, we demonstrated that ultrasound exposure of intravenously administered microbubbles increased limb muscle perfusion by up to 10-fold. Augmentation of limb perfusion was dose dependent with regards to ultrasound power and microbubble dose. To test whether this approach could be useful in peripheral artery disease, contrast-enhanced ultrasound was performed in mice with limb ischemia and produced a significant 3-fold increase in muscle perfusion to a level above that in the contralateral nonischemic limb. Mechanistic studies indicated that much of the contrast-enhanced ultrasound-related increase in perfusion was attributable to stimulation of nitric oxide production with no apparent contribution from adenosine or eicosanoid endothelial-derived vasodilators. Results of our studies indicate that microbubble cavitation during contrast-enhanced ultrasound can produce marked acute increases in tissue perfusion through endothelial shear-mediated nitric oxide release. This approach may be useful for noninvasive therapy of patients with severe peripheral artery disease and critical limb ischemia who cannot undergo immediate revascularization therapy.
Augmentation of Limb Perfusion and Reversal of Tissue Ischemia Produced by Ultrasound-Mediated Microbubble Cavitation

J. Todd Belcik, Brian H. Mott, Aris Xie, Yan Zhao, Sajeevani Kim, Nathan J. Lindner, Azzdine Ammi, Joel M. Linden and Jonathan R. Lindner

Circ Cardiovasc Imaging. 2015;8:
doi: 10.1161/CIRCIMAGING.114.002979

Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/8/4/e002979

Data Supplement (unedited) at:
http://circimaging.ahajournals.org/content/suppl/2015/04/01/CIRCIMAGING.114.002979.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Imaging_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Imaging_ is online at:
http://circimaging.ahajournals.org//subscriptions/
Supplemental Figures

Supplemental Figure 1. Representative examples of H&E histology from the US-exposed muscle (MI of 1.3 with MB) obtained immediately after exposure (left) or at 3 days (right). No hemorrhage or inflammatory response was observed in any section.
Supplemental Figure 2. Mean (±SEM) microvascular blood flux rate (β) and microvascular blood flow (MBF) for the ultrasound-exposed and contralateral control limb after high-power ultrasound (MI 1.3) and either high or low dose microbubble injection. All tests were performed using paired non-parametric tests.