We appreciate the insightful comments by Drs Jenni and Martin regarding our recent publication.1 We agree with them that the determination of serial gradients using conventional Doppler data is problematic. The derivation used for Figure 3 results in the generation of negative gradients, which are nonphysiological, supporting the conclusions that we and Drs Jenni and Martin have presented.

Drs Jenni and Martin correctly pointed out that the velocity V2 in our article was not corrected for pressure recovery. As they suggested, we have now applied the equation derived by Garcia et al2 to the data derived from our patient to correct for energy loss. In this equation, energy loss (EL), which represents the actual workload caused by the stenosis, \(E_L = 4V_c^2(1 - EOA/A_v) \), accounts for both static and dynamic pressure changes across the system and was derived by combining the Bernoulli and linear momentum equations. We used the following assumptions: (1) \(A_v \) represented the aortic area (7.1 cm\(^2\)) distal to the vena contracta (VC); (2) the Doppler velocity across the aortic valve was used for \(V_c \); and (3) we used the Gorlin-derived aortic area (1.2 cm\(^2\)) from catheterization for effective orifice area (EOA). The resulting curve very closely approximated the invasively measured gradient across the aortic valve with a mean gradient of 21.6 versus 21.3 mm Hg (figure available upon request).

However, although this computation provides an accurate derivation of the aortic valve gradient, it does require knowledge of the EOA or aortic valve area. In the clinical scenario presented, the purpose of hemodynamic evaluation was to determine the severity of valvular aortic stenosis. Therefore, we agree with Drs Jenni and Martin that accurate calculation of valve gradients in obstruction in series can be derived from their proposed methodology of determining the degree of pressure recovery, but invasive hemodynamics may still be needed for the clinical determination of valve severity in select cases.

Disclosures

None.

Dawn C. Scantlebury, MBBS
Jeffrey B. Geske, MD
Rick A. Nishimura, MD
Department of Internal Medicine, Division of Cardiovascular Diseases
Mayo Clinic College of Medicine
Rochester, MN

References

Response to Letter Regarding Article, "Limitations of Doppler Echocardiography in the Evaluation of Serial Stenoses"
Dawn C. Scantlebury, Jeffrey B. Geske and Rick A. Nishimura

Circ Cardiovasc Imaging. 2014;7:212
doi: 10.1161/CIRCIMAGING.113.001492
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/7/1/212

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/