Localizing the Air Vents

Functional Imaging–Guided Diagnosis in Extensive Multilocal Subcutaneous Emphysema

David Duncker, MD*; Gernot Beutel, MD*; Thorben König, MD; Marcus Krüger, MD; Cathleen Haense, MD; Georg Berding, MD; Astrid Breitbart, MD; Johann Bauersachs, MD; Frank M. Bengel, MD; Bernhard Schieffer, MD; Carolin Zwadlo, MD

An 88-year-old woman required out-of-hospital cardiopulmonary resuscitation (return of spontaneous circulation 2 minutes) for third-degree heart block and was admitted to our intensive care unit. The patient underwent urgent implantation of a dual-chamber pacemaker. Three hours later, she developed extensive emphysema of her face with crepitation over the entire thorax, neck, and face. Single-plane chest x-ray confirmed subcutaneous emphysema but failed to identify the underlying pathology (Figure 1A). Just a few minutes later, the patient worsened, and subcutaneous emphysema rapidly progressed to neck, midface, eyelids, and fingertips; the decision for whole-body CT was made. CT revealed left-sided ventral pneumothorax and mediastinal and subcutaneous emphysema spreading over cervical structures into both arms (Figure 1B). Furthermore, on the contralateral side, CT showed fractures of the fourth and fifth ribs and ipsilateral multiple fragments of the clavicle. However, a direct lesion of the lungs, the large airways, or the esophagus as a potential main cause could be excluded.

Taking clinical findings into account, we discussed 3 possibilities for a pulmonary-subcutaneous air leakage: (1) post-traumatic pneumothorax after chest compression during cardiopulmonary resuscitation leading to fractures of ribs and sternum, (2) tracheal injury attributable to traumatic endotracheal intubation, or (3) iatrogenic pneumothorax in the course of the pacemaker implantation using an intraclavicular approach for puncture of the subclavian vein.

To elucidate the origin of the leakage, a combination of a technetium (Tc)-99m-Technegas (Cyclomedica Germany GmbH, Salzgitter) single-photon emission CT (SPECT)–derived ventilation study and a low-dose CT scan were performed using a Symbia T2 hybrid SPECT-CT system (Siemens, Erlangen, Germany). A technically identical follow-up investigation was performed at the time of patient discharge.

Tc-99m-Technegas is an ultrafine aerosol of Tc-99m–labeled macroaggregated albumin (Tc-99m-pertechnetate). Since the mid-1980s, >1000 Technegas generators have been installed in diagnostic institutions throughout the world, and >2 million Technegas patient studies have been performed. Since then, it has been approved in Australia and Europe. A phase III study for its licensing is currently underway in the United States. When inhaled, this aerosol shows a static alveolar deposition. After our patient had taken multiple breaths of Tc-99m-Technegas, a SPECT/CT investigation was performed by the time an adequate activity had been deposited in the lungs (≈20–50 MBq) and a sufficient count rate had been registered over the thorax. First, a low-dose CT of the thorax was acquired for 52 seconds using an x-ray current intensity of 70 mA (with Care Dose modulation) and a voltage of 130 kV. Subsequently, a continuous dual-head SPECT acquisition following the body contour was done with a matrix size of 128x128 for 21 minutes. The SPECT study was reconstructed iteratively, including attenuation and scatter correction. Because there was no indication for impaired pulmonary perfusion, additional scanning with Tc-99m–labeled macroaggregated albumin was omitted (see online-only Data Supplement Movie I).

Using this diagnostic approach, we identified the source of the pneumothorax as a singular leakage at the lower part of the left clavicle, resulting in focal trapping of the Technegas particles. It was concluded that this was caused by traumatic injury of the lung during pacemaker implantation (Figure 2). With the knowledge of precise localization, 2 thoracic drains were placed using a midclavicular (Monaldi) and a left lateral access.

During the further hospital stay, the emphysema slowly declined, and re-evaluation by ventilation SPECT/CT was performed on day 8 (see online-only Data Supplement Movie II). Focal air trapping suggesting pulmonary leakage was no longer detectable, and the emphysema was significantly reduced (Figure 2), so both drains were removed. This was interpreted as a main cause for the detected subcutaneous air collection.

DOI: 10.1161/CIRCIMAGING.113.000592
as confirmation of the assumed underlying pathomechanism. During follow-up, the patient remained asymptomatic and was discharged from the hospital on day 14. On routine pacemaker follow-up after 1 month, the patient presented an excellent neurological outcome. Furthermore, no clinical signs of residual skin emphysema were present.

In conclusion, we suggest a benefit for the use of functional ventilation SPECT/CT in the detection, localization, and differentiation of potentially multifactorial airway injuries offering concerted treatment options.

Disclosures

None.

References

Key Words: subcutaneous emphysema \square tomography, emission-computed, single-photon \square tomography, X-ray computed
Localizing the Air Vents: Functional Imaging–Guided Diagnosis in Extensive Multilocal Subcutaneous Emphysema

David Duncker, Gernot Beutel, Thorben König, Marcus Krüger, Cathleen Haense, Georg Berding, Astrid Breitbart, Johann Bauersachs, Frank M. Bengel, Bernhard Schieffer and Carolin Zwadlo

Circ Cardiovasc Imaging. 2013;6:1115-1116
doi: 10.1161/CIRCIMAGING.113.000592

Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/6/6/1115