Drug-eluting stents (DES) minimized the occurrence of in-stent restenosis but with a penalty of increased risk of late stent thrombosis. In patients with late stent thrombosis, adverse vessel wall reactions such as uncovered and malapposed stent struts, coronary aneurysms, and accelerated neointimal hyperplasia, and accelerated coronary artery disease have been identified. The stent polymer is suspected to induce an inflammatory response, resulting in vessel wall abnormalities.

Identification of patients with an inflammatory response to DES might be essential in preventing late stent thrombosis. Inflammatory processes increase vessel wall permeability, leading to edema, and both native and peri-stent vessel wall inflammation may be associated with tissue edema. Cardiovascular magnetic resonance (CMR) performed with a T2-weighted short-τ inversion recovery sequence (T2-STIR) has recently been shown to identify localized coronary edema in the culprit artery of patients with acute myocardial infarction. Parameters for the ECG-triggered, navigator-gated, dark-blood, T2-STIR fast-spin-echo sequence were as follows: repetition time, 2 RR intervals; echo time, 100 milliseconds; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present intervals; echo train length, twenty 0.68×0.68×8-mm³ voxels; and 2 signal averages. Here we present.
Figure 1. Coronary angiogram from patient 1 with stent thrombosis after 15 months showing peri-stent staining in the proximal left anterior descending artery (LAD, top). Optical coherence tomography (OCT) (A–C) showed an eccentric fibrotic plaque formation (yellow arrows) in the left main coronary artery (A) and, in the proximal LAD circumflex artery bifurcation, a tangential dropout artifact (yellow star in B). The stented area of the LAD revealed several thrombi (dotted yellow arrows in C) and aneurysm formation (An). The stent struts are highlighted by the yellow arrowheads. T2-weighted short-τ inversion recovery (T2-STIR) cardiac magnetic resonance (CMR) immediately after the medically treated stent thrombosis demonstrated hyperintense signal intensity indicative of coronary edema (D–F, white arrows) corresponding to the atherosclerotic plaques in the vessel wall of the proximal LAD (E) extending to the left main coronary artery (D). The stented area also demonstrated the presence of peri-stent edema (F). Histology of excised peri-stent vessel (obtained at bypass surgery at 21 months) showed infiltration by eosinophils (G). DES indicates drug-eluting stents.

Figure 2. Coronary angiogram from patient 2 at the 8-month follow-up after treatment by drug-eluting stents (DES) showed substantial peri-stent staining in the proximal left anterior descending artery (LAD; A). T2-weighted short-τ inversion recovery (T2-STIR) cardiac magnetic resonance (CMR) showed hyperintense signal intensity (white arrow in B) in the peri-stent area of the proximal LAD, indicating the presence of peri-stent edema (B). Optical coherence tomography (OCT) after percutaneous coronary intervention showed well-apposed stent struts with some stent distortion caused by final kissing balloon dilatation (C). At the 8-month follow-up, OCT showed aneurysm formation between struts, resulting in a flower-like pattern with large extra stent space (D). The extent of sacculate evaginations following the strut pattern was readily visualized by 3-dimensional OCT reconstruction of the stented vessel (E) (QAngioOCT RE, Medis Specials, the Netherlands).
staining (Figure 3, top). CMR at 1 year showed peri-stent tissue edema at the proximal LAD extending to the left main coronary artery, where an eccentric plaque was located (Figure 3A and 3B). The patient underwent subacute coronary bypass grafting. Histological examination of a biopsy from the stented area of the LAD showed substantial peri-strut inflammation with degranulating eosinophils.

These 3 cases represent the first in vivo demonstration of peri-stent edema after treatment by DES by noninvasive, non–contrast-enhanced imaging. Coronary edema detected by T_2-STIR CMR might emerge as a surrogate marker for inflammation, thus possibly identifying patients with an increased risk of late coronary stent thrombosis.

Disclosures

Dr Holm has received research grants and speaker fees from St. Jude Medical; research grant from Cordis; and travel grants, research grants, and speakers fees from Terumo. Dr Botker received speaker fees from Zealand Pharma. Dr Christiansen received research grants, travel grants, and speaker fees from St. Jude Medical, Terumo, and Cordis. Dr Tu has held a position at Medis Medical Imaging. Dr Lassen received research grants, travel grants, and speaker fees from St. Jude Medical, Terumo, and Cordis. Dr Thuesen received research grants, travel grants, and speaker fees from Terumo and Cordis. The other authors report no conflicts.

References

Coronary Edema Demonstrated by Cardiovascular Magnetic Resonance in Patients With Peri-Stent Inflammation and Aneurysm Formation After Treatment by Drug-Eluting Stents

Niels R. Holm, Won Yong Kim, Michael Maeng, Samuel A. Thrysøe, Hans Erik Bøtker, Leif Thuesen, Søren Høyer, Shengxian Tu, Erling Falk, Jens Flensted Lassen, Per Hostrup Nielsen and Evald Høj Christiansen

doi: 10.1161/CIRCIMAGING.112.979997

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/6/2/352

Data Supplement (unedited) at:
http://circimaging.ahajournals.org/content/suppl/2013/03/18/6.2.352.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/