Percutaneous mitral valve repair (PMVR) using the edge-to-edge technique has been shown to be safe and effective for treatment of mitral regurgitation considering specific indications. Analysis of the morphological and functional effects of PMVR is complex. Two-dimensional (2D) echocardiography provides only limited access to morphological changes induced by mitral valve repair, and commonly used techniques based on 2D echocardiography to evaluate functional changes of the mitral valve are not validated for postprocedural double-orifice mitral valve. By contrast, 3D echocardiography provides improved visualization of the complex mitral valve morphology. It has been shown to allow accurate analysis of mitral regurgitation severity based on direct measurement of regurgitant orifice areas in 3D images with or without color Doppler.

This study evaluated the morphological and functional changes of the mitral valve induced by percutaneous edge-to-edge repair using 3D transesophageal echocardiography (TEE), preprocedural morphological characteristics determined by 3D TEE with impact on functional effectiveness of PMVR, changes of the left atrial and left ventricular (LV) volumes at 6 months follow-up related to PMVR effectiveness.

Background—Analysis of procedural effects in patients undergoing percutaneous mitral valve repair (PMVR) using the edge-to-edge technique is complex, and common methods to define mitral regurgitation severity based on 2-dimensional (2D) echocardiography are not validated for postprocedural double-orifice mitral valve. This study used 3D transesophageal echocardiography (TEE) to determine the functional and morphological effects of PMVR.

Methods and Results—In 39 high-risk surgical patients with moderate to severe functional mitral valve regurgitation, 3D TEE with and without color Doppler as well as 2D transthoracic and TEE was performed before and after PMVR (MitraClip device). Mitral valve regurgitant volume by color Doppler 3D TEE was determined as the product of vena contracta areas defined by direct planimetry and velocity time integral using continuous-wave Doppler. Regurgitant volume was reduced from 84.1±38.3 mL preintervention to 35.6±25.6 mL postintervention. Patients in whom vena contracta area could be reduced >50% had a smaller preprocedural mitral annulus area compared with patients with ≤50% reduction (11.9±3.9 versus 16.1±8.5 cm², respectively; P=0.036) and tended to have a smaller mitral annulus circumference (13.0±2.0 versus 14.8±4.1 cm, respectively; P=0.112). At 6 months follow-up, left atrial and left ventricular end-diastolic volumes were significantly more reduced in patients in whom regurgitant vena contracta area was reduced by >50% compared with those with less reduction (−11.4±5.2 versus −4.8±7.7%; P=0.005, and −11.0±7.2 versus −4.5±9.3%; P=0.028). The maximum diastolic mitral valve area decreased from 6.0±2.0 to 2.9±0.9 cm² (P<0.0001).

Conclusions—Three dimensional TEE demonstrates significant reduction of regurgitant volume after PMVR. The unique visualization of the mitral valve by 3D TEE allows improved understanding of the morphological and functional changes induced by PMVR. (Circ Cardiovasc Imaging. 2012;5:748-755.)

Key Words: 3-dimensional echocardiography ■ image guided intervention ■ mitral regurgitation transesophageal echocardiography ■ valvular repair
Left atrial and LV systolic and diastolic volumes were determined by manual tracing of endocardial contours in the 4- and 2-chamber view using Simpson biplane rule.

Grading of Mitral Regurgitation Severity
Mitral regurgitation severity was graded considering previously published Endovascular Valve Edge-to-Edge Repair Study (EVEREST) criteria. Furthermore, the mitral regurgitant jet area was assessed by 2D TEE color flow Doppler in an intercommissural view using a Nyquist limit of 50 to 60 cm/s, and a color gain that just eliminated random color speckle from nonmoving regions. Accordingly, these areas were assessed separately postintervention for the jet located medial and lateral to the clip. The medial and lateral areas were summed up to a total jet area.

Three Dimensional TEE to Assess Mitral Valve Morphology and Function
Mitral regurgitation vena contracta area (VCA) was assessed by analysis of 3D TEE full-volume color flow Doppler data sets as previously described. After adjusting a cut plane orthogonal to the regurgitant jet at level of mitral valve commissural line, direct planimetry of VCA could be done before the procedure. The regurgitant volume (RV) was calculated by multiplying VCA and velocity time integral obtained by continuous-wave Doppler. Similarly, areas of the medial and the lateral regurgitation jet were determined by planimetry and summed up to a total VCA postintervention (Figure 1). The medial and lateral RVs were calculated by multiplying each VCA with the velocity time integral obtained by continuous-wave Doppler.

Maximum diastolic mitral valve area (MVA) was assessed by 3D TEE zoom mode. Direct planimetry was done after adjusting cut

Table 1. Patient Characteristics

Age, y	73±9
Male/female	24 (62%)/15 (38%)
Logistic Euroscore, %	18±12
NYHA*	27 (69%)
IV	12 (31%)
Ejection fraction, %	46±16
Coronary artery disease	
1-vessel	4 (10%)
2-vessel	4 (10%)
3-vessel	18 (46%)
Left atrial area, cm²	29.9±9.9
Mitral regurgitation grade†	
I	0 (0%)
II	29 (74%)
III	10 (26%)
IV †	
Color Doppler mitral regurgitation jet area, cm²	7.5±3.2
Effective regurgitant orifice area by flow convergence method, cm²	0.33±0.15
Mitral valve area, cm²	6.0±2.0

*New York Heart Association (NYHA) functional classification for the extent of heart failure.
†Mitral regurgitation grade according to Endovascular Valve Edge-to-edge Repair Study (EVEREST) criteria.10

Image Acquisition

Echocardiographic studies were performed with a commercially available echocardiographic system (IE 33; Philips Medical Systems, Andover, MA) with a 2D TTE probe (S5-1) and a TEE probe (X7-2t) allowing 2D and real-time 3D TEE. Three dimensional TEE studies included zoom mode and full-volume wide-angle acquisition with and without color Doppler flow imaging of the mitral valve. Three dimensional analysis was performed with dedicated software (3DQ and MVQ, QLAB-Version 7.0; Philips Medical Systems, Andover, MA). Care was taken to perform image acquisition with similar hemodynamic conditions before and after PMVR. This included administration of fluid challenges and vasodilators to obtain similar blood pressures.

Left Atrial and LV Volumes

Left atrial and LV systolic and diastolic volumes were determined before and 6 months after PMVR based on transthoracic 2- and 4-chamber views. Left atrial volumes were determined by manual tracing of endocardial contours at end-diastole of the left atrium in the 4-chamber view using the Simpson rule. LV end-diastolic and end-systolic volumes were determined by manual tracing of endocardial contours in the 4- and 2-chamber view using Simpson biplane rule.

Figure 1. Three dimensional TEE full-volume color Doppler view from the anterior roof of the left atrium toward the mitral valve in mid-systole before PMVR (A). A cut plane orthogonal to the regurgitant jet allows direct visualization of the proximal vena contracta area (0.52 cm²) (B). After PMVR a view from the anterior roof of the left atrium toward the mitral valve in mid-systole allows assessment of the device effect (C). Orthogonal cut planes of the remaining medial and lateral regurgitation jets can be adjusted allowing direct visualization of the medial (0.16 cm²) (D) and the lateral vena contracta area (0.04 cm²) (E). AL indicates anterolateral; PMVR, percutaneous mitral valve repair; PM, posteromedial; TEE, transesophageal echocardiography; and VCA, vena contracta area.
planes before and after PMVR for each orifice. Medial and lateral areas were summed up to a total MVA after PMVR (Figure 2). Mean diastolic mitral valve pressure gradient (Pmean) was measured by continuous-wave Doppler before and after PMVR for 1 orifice. The impact of MVA preintervention on Pmean postprocedure was evaluated. In patients with atrial fibrillation, measurements of 5 cardiac cycles were averaged.

Clip Position

The commissural line was defined as the line between the posteromedial and the anterolateral edge of the mitral valve in diastole. After PMVR the position of the clip or the 2 clips relative to the center of the commissural line was measured using 3D TEE zoom mode (Figure 3).

Mitral Annulus Dimensions

Before PMVR the mitral valve annulus area, annulus circumference, anterior to posterior diameter, and posteromedial to anterolateral diameter were calculated by analyzing 3D TEE full-volume wide-angle acquisition data sets with a quantification software as previously described\(^1\) (Figure 4). The impact of mitral annulus dimensions on the success of PMVR was evaluated. Procedural success was defined as reduction of the total regurgitation VCA $>$50%.

Analysis of Mitral Valve RV by 2D Echo Techniques

Mitral valve RV was determined by subtracting forward LV outflow from 2D TTE total LV stroke volume as described before.\(^4\) On the basis of 2D TEE, effective regurgitant orifice area (EROA) was calculated using the flow convergence method as previously described. The RV was calculated by multiplying EROA and velocity time integral obtained by continuous-wave Doppler.\(^4\) After PMVR, the EROA and RV were calculated separately for the medial and the lateral jet by measuring the radius of each flow convergence zone in the intercommissural view and the peak regurgitant velocity and velocity time integral by continuous-wave Doppler. The medial and lateral regurgitant orifice areas and volumes were summed up to a total EROA and a total RV.

Figure 2. Three dimensional TEE view from the roof of the left atrium in diastole before PMVR (A) with direct visualization of the maximum diastolic mitral valve area (B). It can be noted that after PMVR the 2 resulting orifices are not in 1 plane (D). Direct planimetry of diastolic mitral valve areas was done separately for the medial (C) and the lateral orifice (E). AL indicates anterolateral; Ao, aortic valve; MVA, mitral valve area; PMVR, percutaneous mitral valve repair; PM, posteromedial; and TEE, transesophageal echocardiography.

Figure 3. Three dimensional TEE view from the anterior roof of the left atrium toward the mitral valve after PMVR (A). The double-headed arrow shows the orientation of the commissural line as defined as the line between the posteromedial and the anterolateral edge of the mitral valve in diastole. The distance (d) between the center of the mitral valve commissural line (white dot) and the position of the clip (red dot) was assessed (B). AL indicates anterolateral; Ao, aortic valve; PM, posteromedial; PMVR, percutaneous mitral valve repair; and TEE, transesophageal echocardiography.

Figure 4. Analysis of 3D TEE data sets enables accurate visualization of the mitral valve annulus with anterior and posterior leaflets as well as position of the papillary muscles. The mitral valve including the mitral annulus can be shown from different views, in particular from a lateral view (A) and a superior view from the roof of the left atrium toward the mitral valve (B). Mitral annulus area, mitral annulus circumference as well as the anterior to posterior and anterolateral to posteromedial diameter (white double-headed arrows) can be determined. 3D indicates 3-dimensional; A, anterior; AL, anterolateral; Ao, aortic valve; P, posterior; PM, posteromedial; and TEE, transesophageal echocardiography.
Observer Agreement

In 15 randomly selected studies, 2 observers independently measured the RV by subtracting forward outflow from 2D total LV stroke volume and by 3D TEE direct planimetry of VCA before and after PMVR, and interobserver agreement was assessed by analysis of deviation of each measurements. These same studies were also re-examined by 1 observer at a separate time 1 month later to determine intraobserver agreement.

Statistics

Statistical analysis was performed using the MedCalc software (version 9.5.1.0; Mariakerke, Belgium) and R statistical software (version 2.14.1). Continuous data are presented as mean±SD and are compared with paired Student t test or ANOVA as adequate. Categorical data were presented as frequencies and compared with the Pearson χ² test. Pearson correlation coefficient (r) was calculated to express agreement between MV A before PMVR and mean diastolic mitral valve gradient postprocedure. Bland-Altman analysis was performed to determine differences in RVs defined by the different analysis methods. Intraclass correlation coefficients (ICCs) were calculated between RVs determined by the different methods. Regression analysis was performed to identify predictors for reduction of VCA >50% after PMVR. Variables included in the analysis were severity of valvular regurgitation, mitral annulus area, mitral annulus circumference, mitral annulus diameters, and use of 1 or 2 mitral valve clips. Receiver-operating characteristics analysis was performed to define the impact of MVA preintervention on mean diastolic pressure gradient postintervention. A P<0.05 was considered significant.

Results

Patient characteristics are given in Table 1. Considering the EVEREST criteria, 29 of the 39 patients had mitral regurgitation grade III and 10 patients had mitral regurgitation grade IV before the procedure. After the procedure, 30 patients had grade I, 8 patients had grade II, and 1 patient had grade III mitral regurgitation. In 28 of the 36 patients alive at 6 months follow-up, the New York Heart Association (NYHA) functional class improved by at least 1 grade, whereas in 8 patients it did not change. The average NYHA functional class improved from 3.3±0.5 preintervention to 2.0±0.7 at 6 months follow-up (P<0.0001). Using 3D TEE to assess mitral regurgitation severity before PMVR, VCA was found to be 0.50±0.22 cm² and RV was 84.1±38.3 mL.

Impact of Edge-to-Edge Repair on Mitral Regurgitation

The remaining medial and lateral regurgitant jet orifice areas after PMVR determined by direct planimetry of VCA using 3D TEE were 0.12±0.10 and 0.09±0.08 cm², respectively, indicating a reduction of regurgitant area by 58.9% to 0.177 after PMVR.

Table 2. Mitral Valve Regurgitant Volume Before and After PMVR Determined by Different Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Before PMVR</th>
<th>After PMVR</th>
<th>Change (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regurgitant volume by subtracting LV outflow from 2D TTE LV stroke volume, mL</td>
<td>40.0±16.5</td>
<td>15.3±10.4</td>
<td>−66.4%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Regurgitant volume by 2D TEE flow convergence method, mL</td>
<td>56.0±27.4</td>
<td>14.3±10.9</td>
<td>−74.5%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Regurgitant volume by 3D TEE VCA method, mL</td>
<td>84.1±38.3</td>
<td>35.6±25.6</td>
<td>−59.2%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

2D indicates 2-dimensional; 3D, 3-dimensional; LV, left ventricular; PMVR, percutaneous mitral valve repair; TEE, transesophageal echocardiography; and VCA, vena contracta area.
After PMVR, a residual medial and lateral regurgitation jet could be defined by 2D echocardiography in all patients with a remaining bigger color Doppler jet area located medial (1.5±1.1 cm²) and a smaller jet area located lateral to the clip (1.2±1.1 cm²).

Clip Position Relative to the Commissural Line

Postprocedural analysis of the clip position using 3D TEE demonstrated a location slightly lateral to the center of the mitral valve commissural line (0.03±0.23 cm lateral), with a range from 0.35 cm medial to 0.67 cm lateral to the central position.

Effectiveness of PMVR Related to Annular Size

Before PMVR, the mitral valve annulus area determined by 3D TEE was 13.2±5.8 cm², the annulus circumference was 13.5±2.9 cm, the anterior to posterior mitral annulus diameter was 3.7±0.7 cm, and the posteroanterior to anterolateral diameter was 4.1±0.8 cm. Patients with a reduction of 3D TEE regurgitant VCA >50% after the procedure (n=27) had a smaller preprocedural mitral annulus area compared with patients with a reduction ≤50% (n=12) (11.9±3.5 versus 16.1±8.5 cm²; P=0.036). Mitral annulus circumference, mitral annulus anterior to posterior diameter, and annulus posteroanterior to anterolateral diameter tended to be smaller in patients with a reduction of 3D TEE regurgitant VCA >50% (Table 3). Mitral annulus area was the only predictor for reduction of regurgitant VCA >50% (odds ratio 0.964 per additional cm² VCA before PMVR; 95%CI 0.913 to 0.991; P=0.0323).

Six Months Follow-Up Echocardiography

RVs determined by subtracting forward stroke volume from 2D LV stroke volume were unchanged at 6 months after PMVR (15.0±11.9 mL) compared with those immediately after the procedure (15.3±10.4 mL; P=0.8949).

Left atrial and ventricular volumes decreased significantly at 6 months follow-up after PMVR. The reduction in left atrial volume as well as LV end-diastolic volume at 6 months follow-up was significantly greater in patients with a reduction of regurgitant VCA >50% after PMVR as defined by 3D TEE compared with those patients with a reduction of regurgitant VCA ≤50% (Table 4). Two dimensional TTE-based analysis of RVs (subtraction of LV outflow from 2D LV stroke volume) demonstrated only nonsignificant differences between patients with a reduction of RV >50% and ≤50% in subsequent changes of left atrial, LV end-diastolic, and end-systolic volumes at 6 months follow-up (-8.9±6.7% versus -11.3±6.1%; P=0.382, -9.6±9.1% versus -7.0±4.7%; P=0.442 and -6.3±7.5% versus 5.0±7.8%; P=0.669). Similarly, if analysis of RVs based on 2D TEE flow convergence method was applied, there was no significant difference between patients with reduction of RV >50% and ≤50% with regard to subsequent remodeling of left atrial, LV end-diastolic and end-systolic volumes (-9.3±6.9 versus -11.1±4.4%; P=0.666, -9.5±8.5 versus -3.6±4.1%; P=0.240 and -6.3±7.7 versus -2.4±1.2%; P=0.394).

Change of Mitral Inflow Function

The maximum diastolic MV A area before the procedure determined by planimetry in 3D zoom mode was 6.0±2.0 cm². Diastolic MVA was reduced after the procedure. The remaining

Table 3. Impact of Mitral Valve Annulus Dimensions on Reduction of the Total Mitral Regurgitation VCA After PMVR Determined by 3D TEE Color Doppler Direct Planimetry

<table>
<thead>
<tr>
<th></th>
<th>Reduction of VCA >50% (n=27)</th>
<th>Reduction of VCA ≤50% (n=12)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitral valve annulus area, cm²</td>
<td>11.9±3.5</td>
<td>16.1±8.5</td>
<td>0.036</td>
</tr>
<tr>
<td>Mitral annulus circumference, cm</td>
<td>13.0±2.0</td>
<td>14.8±4.1</td>
<td>0.112</td>
</tr>
<tr>
<td>Mitral annulus anterior to posterior diameter, cm</td>
<td>3.5±0.7</td>
<td>3.9±0.8</td>
<td>0.163</td>
</tr>
<tr>
<td>Mitral annulus posteroanterior to anterolateral diameter, cm</td>
<td>4.0±0.7</td>
<td>4.4±1.1</td>
<td>0.263</td>
</tr>
</tbody>
</table>

3D indicates 3-dimensional; PMVR, percutaneous mitral valve repair; TEE, transesophageal echocardiography; and VCA, vena contracta area.

Table 4. Left Atrial Volume, LVEDV and LVESV at Baseline and Relative Volume Changes at 6 mo After PMVR Defined by 2D TTE Related to Reduction of the Total Mitral Regurgitation VCA After Procedure as Determined by 3D TEE

<table>
<thead>
<tr>
<th></th>
<th>Reduction of VCA >50% (n=25)</th>
<th>Reduction of VCA ≤50% (n=11)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA volume at baseline, mL</td>
<td>160.6±68.0</td>
<td>157.5±52.9</td>
<td>0.896</td>
</tr>
<tr>
<td>LVEDV at baseline, mL</td>
<td>205.2±106.7</td>
<td>205.0±107.1</td>
<td>0.996</td>
</tr>
<tr>
<td>LVESV at baseline, mL</td>
<td>123.6±98.6</td>
<td>120.8±95.1</td>
<td>0.938</td>
</tr>
<tr>
<td>Δ LA volume 6 mo after PMVR, %</td>
<td>-11.4±5.2</td>
<td>-4.8±7.7</td>
<td>0.005</td>
</tr>
<tr>
<td>Δ LVEDV 6 mo after PMVR, %</td>
<td>-11.0±7.2</td>
<td>-4.5±9.3</td>
<td>0.028</td>
</tr>
<tr>
<td>Δ LVESV 6 mo after PMVR, %</td>
<td>-6.5±8.5</td>
<td>-4.9±4.3</td>
<td>0.548</td>
</tr>
</tbody>
</table>

2D indicates 2-dimensional; LA, left atrium; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; PMVR, percutaneous mitral valve repair; TEE, transesophageal echocardiography; and VCA, vena contracta area.
The major findings of this study are as follows: mitral regurgitation volume is reduced by 59% after PMVR as assessed by 3D TEE; PMVR effectiveness as well as postprocedural mitral valve gradient are related to parameters of preprocedural mitral valve morphology defined by 3D echocardiography; greater effectiveness of PMVR is associated with greater reduction of left atrial and LV volumes at 6 months follow-up, whereas the relative reduction in mitral regurgitation volume is similar for the different echocardiographic modalities, the absolute mitral regurgitation volumes defined by 3D and 2D imaging techniques are significantly different.

Discussion

The major findings of this study are as follows: mitral regurgitation volume is reduced by 59% after PMVR as assessed by 3D TEE; PMVR effectiveness as well as postprocedural mitral valve gradient are related to parameters of preprocedural mitral valve morphology defined by 3D echocardiography; greater effectiveness of PMVR is associated with greater reduction of left atrial and LV volumes at 6 months follow-up, whereas the relative reduction in mitral regurgitation volume is similar for the different echocardiographic modalities, the absolute mitral regurgitation volumes defined by 3D and 2D imaging techniques are significantly different.

Analysis of Mitral Regurgitation Severity

Planimetry of regurgitant jet area by 2D color Doppler is known as a semiquantitative method for assessment of mitral regurgitation severity. In a phantom model, planimetry of the regurgitant jet area has been shown to overestimate regurgitation severity. In a phantom model, planimetry of the regurgitant jet area has been shown to overestimate regurgitation severity. In this study, an intercommisural view was used for assessment of the regurgitant jet areas, because only in this view both postprocedural jets could be visualized in 1 plane.

Analysis of RV by subtracting LV systolic outflow from 2D TTE stroke volume is applicable even in case of multiple jets. However, this method is known to underestimate mitral valve regurgitation severity due to underestimation of LV volumes. Nevertheless, this has been the only quantitative method used in previous studies to assess procedural success of PMVR. Both, 3D TEE data sets with or without color Doppler have been used for direct visualization of mitral regurgitant orifice areas. Direct planimetry of VCA by 3D color Doppler echocardiography has been shown to allow precise quantification of mitral valve regurgitation validated against magnetic resonance imaging. Similarly, analysis of mitral regurgitant areas and volumes based on 3D TEE without color has recently been validated against magnetic resonance imaging. In patients with mitral regurgitation, regurgitant orifice area was found to be the most robust parameter for quantification of lesion severity. A transfer of the excellent results obtained in 1-orifice mitral valve morphology to the 2-orifice morphology after PMVR seems adequate, as this modality for quantification of regurgitant severity is based on direct visualization of mitral regurgitant orifice areas. In this study, mitral regurgitation volumes were found to be substantially greater using quantification based on direct planimetry of VCA by 3D color Doppler TEE when compared with a definition of regurgitation volumes by subtracting LV outflow from 2D TTE stroke volume. This difference was seen before as well as after the procedure. The difference should be explained by the known underestimation of volumes by the 2D method. However, reduction of mitral regurgitation fraction was of the same magnitude irrespective of applied method for quantification. Three dimensional TEE has a unique advantage in that it allows analysis of mitral regurgitation severity for each orifice of the double-orifice mitral valve after PMVR. Assessment of EROA before and sum of the medial and the lateral EROA after edge-to-edge repair by 2D color Doppler TEE seems to overestimate the procedural reduction of mitral regurgitation compared with subtracting LV outflow from total stroke volume or direct planimetry of VCA by 3D TEE. The smaller intra- and interobserver variability of RV measures by 3D echocardiography allows better detection of RV changes during serial studies compared with 2D echocardiography.

Mitral Valve Area

Three dimensional echocardiography has been shown to be a precise technique to assess maximum diastolic MVA. In an in vitro model, the hemodynamic behavior of a double-orifice mitral valve did not differ from a physiological 1-orifice valve of same total area and same pressure gradient. In previous studies, total MVA was reduced by 31% to 44% after PMVR. In this study, a postprocedural reduction of MVA by 52.5% has been shown by 3D TEE planimetry. The minor reduction seen in previous studies may be due to the obliquity when measuring the valve areas after PMVR in only 1 plane by 2D echocardiography. This can overestimate each area of postprocedural mitral valve double-orifice resulting in an underestimation of the procedural reduction of MVA.

In most studies, patients with an MVA <4.0 cm² at baseline were excluded from PMVR. Mean pressure gradient ≥5 mm Hg is a criterion of moderate mitral stenosis. In this study, all patients with an MVA <4.1 cm² by 3D TEE preintervention had a mitral valve diastolic mean pressure gradient ≥5 mm Hg after edge-to-edge repair, confirming that the previously arbitrarily applied exclusion criteria for PMVR is correct if postprocedural mitral stenosis should be prevented.
Impact of Mitral Annulus Dimensions on Effective Reduction of Mitral Regurgitation

In this study, PMVR was associated with less procedural success in patients with enlarged preprocedural mitral annulus. This finding relates to previous reports on the surgical edge-to-edge repair, which has been shown to be unsuccessful in patients with significant annulus dilation and enlarged septal to lateral annulus distance. However, only mitral annulus area defined by 3D TEE was found to be a predictor of a reduction in mitral regurgitant VCA >50%, although diameters were not significant. This finding supports the importance of 3D imaging for preprocedural patient selection and prediction of procedural effectiveness.

Impact of Procedural Effectiveness on Left Atrial and Ventricular Volumes

PMVR has been demonstrated to be similarly effective in reducing LV volumes at follow-up compared with surgical repair. This study extended this observation of reduced volumes at follow-up to the left atrium. In addition, changes in left atrial and LV volumes were significantly greater in patients with a reduction of regurgitant VCA >50% than in those with a reduction ≤50% after the procedure.

Limitations

Patients were evaluated within 24 hours before, within 24 hours after PMVR, and at 6 months follow-up. No information on long-term results was obtained. Only echocardiographic methods have been used for quantification of mitral regurgitation severity, and no independent imaging method was applied. The applied 2D echocardiography-based methods to evaluate mitral regurgitation were not validated for post-procedural double-orifice mitral valve morphology. However, there is no validated method for quantification of mitral regurgitation after the PMVR procedure, which can be applied in the majority of patients. Cardiac magnetic resonance tomography has been shown to be feasible in patients after PMVR, but pre-existing cardiac device therapy prevents the use of magnetic resonance imaging for precise assessment of mitral regurgitation in a high rate of patients undergoing PMVR.

Clinical Implications

This study showed that mitral valve RVs before and after PMVR can be evaluated with lower intra- and interobserver variability using 3D TEE compared with 2D echocardiography-based methods. This may allow better assessment of procedural effects during serial analysis of mitral regurgitant severity pre- to postprocedure. Three dimensional TEE used for preprocedural analysis of mitral valve morphology allows definition of patients with greater procedural effectiveness and greater risk of postprocedural mitral valve stenosis. Furthermore, the 3D TEE based analysis of procedural effectiveness allows an improved definition of patients with subsequent remodeling of left atrial and LV remodeling.

Conclusions

Three dimensional echocardiography demonstrates significant reduction of RV after PMVR. The unique visualization of the mitral valve by 3D TEE allows improved understanding of the morphological and functional changes induced by PMVR as well as prediction of procedural success.

Disclosures

None.

References

improved understanding of the morphological and functional changes induced by the intervention.

...used to predict the effectiveness of percutaneous mitral valve repair and postprocedural application of 3D TEE allows an improved definition of patients with subsequent left atrial and left ventricular remodeling. In clinical practice, preprocedural 3D TEE based analysis of the mitral valve geometry may be a valuable tool in selecting patients for this procedure. The findings of this study suggest that 3D TEE-based analysis of procedural effectiveness allows an improved definition of patients with greater procedural effectiveness and greater risk of postprocedural mitral valve stenosis. Furthermore, the use of 3D TEE for the assessment of procedural effects during serial analysis of mitral regurgitant severity allows for a more accurate quantification of procedural effects on mitral morphology and function. This study showed that mitral valve regurgitant volumes pre- and postpercutaneous mitral valve repair can be evaluated with lower intra- and interobserver variability using 3D transesophageal echocardiography (TEE) compared with 2D echocardiography-based methods. This may allow better assessment of procedural effects during serial analysis of mitral regurgitant severity.

Three dimensional TEE used for preprocedural analysis of mitral valve morphology allows definition of patients with greater procedural effectiveness and greater risk of postprocedural mitral valve stenosis. Furthermore, the 3D TEE-based analysis of procedural effectiveness allows for an improved definition of patients with subsequent left atrial and left ventricular remodeling. In clinical practice, preprocedural 3D TEE based analysis of the mitral valve geometry may be used to predict the effectiveness of percutaneous mitral valve repair and postprocedural application of 3D TEE allows for an improved understanding of the morphological and functional changes induced by the intervention.
Analysis of Procedural Effects of Percutaneous Edge-to-Edge Mitral Valve Repair by 2D and 3D Echocardiography

Ertunc Altıok, Sandra Hamada, Kathrin Brehmer, Kathrin Kuhr, Sebastian Reith, Michael Becker, Jörg Schröder, Mohammad Almalla, Walter Lehmacher, Nikolaus Marx and Rainer Hoffmann

Circ Cardiovasc Imaging, 2012;5:748-755; originally published online September 21, 2012; doi: 10.1161/CIRCIMAGING.112.974691

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/5/6/748

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/