Cardiac Dysfunction and Preeclampsia
Can Imaging Give Clues to Mechanism?

Esther F. Davis, MBBS; Adam J. Lewandowski, BSc; Paul Leeson, PhD, FRCP

A pregnancy complicated by preeclampsia identifies both a mother and child with an unusual predisposition to develop cardiovascular diseases.\(^1,2\) Therefore, characterization of biological pathways common to both preeclampsia and cardiovascular disease may provide novel insights into both conditions.\(^3\) One particular area of interest is whether known triggers for preeclampsia, such as hypoxia, inflammation, and angiogenic imbalance, may also trigger the cardiac dysfunction that has been observed in women with preeclampsia.\(^4\)

Myocardial Deformation
Imaging and Preeclampsia

Speckle tracking provides a potentially powerful approach to characterize subtle changes in myocardial contraction and relaxation before gross changes in volumetric indices such as ejection fraction. Furthermore, when rigorously applied, speckle tracking avoids the inherent angle-dependent limitations of tissue Doppler imaging and provides multiplanar evaluation of myocardial deformation, from a global level, down to individual segments. This real-time evaluation of both temporal and spatial myocardial deformation introduces new possibilities to combine observations from imaging with those from basic scientific discovery.\(^4\) Use of advanced imaging in certain risk groups has already identified selective changes in longitudinal or circumferential strain consistent with the known impacts of factors such as hypoxia or lipids on myocardial function in experimental models.\(^5\) This translational approach allows validation in humans of observations and replace with hypotheses developed from experimental studies and identification of clinically relevant disease biomarkers for subsequent interventions.

Shahul et al\(^6\) have used this approach to evaluate the impact of hypertensive pregnancy disorders on myocardial function. As a result, the major finding from the article is that myocardial strain is significantly reduced in mothers with preeclampsia compared with those with non–proteinuric hypertension, despite similar blood pressures and left ventricular geometry. Additional biological factors, beyond changes in blood pressure, must account for the additional cardiac dysfunction in preeclampsia. They identify relatively greater impairment of longitudinal systolic function and propose this may reflect the fact that “…a key effector of biochemical perturbations is likely soluble fms-like tyrosine kinase-1, which causes both systemic vasoconstriction and intense small vessel myocardial vasoconstriction.” Although biologically plausible, further experimental investigation will be required to prove this association, as it is equally possible that other biological or vascular factors drive the changes in deformation. Account also needs to be taken of the current methodological variations and limitations in speckle tracking across different imaging planes. Nevertheless, the approach demonstrates how echocardiography can now be used for sophisticated evaluation of the myocardium to develop hypotheses in a way that would not have been possible with gross volumetric measures of myocardial function.

Future Work

Prospective data on regional strain changes will be of interest. The angiogenic imbalance that causes preeclampsia typically seems to resolve after pregnancy, whereas there is...
now evidence that cardiac changes persist for at least a year20 (Table). The severity of the long-term dysfunction varies depending on how investigators chose to define cardiac function and whether they take account of preeclampsia severity in their analysis. Nevertheless, advanced imaging studies of myocardial function in women, late after a preeclamptic pregnancy, are likely to be of value to define the long-term clinical relevance of the findings of Shahul et al.18 Such studies will provide further insights into underlying biological variation and it is even possible that some changes are already present before pregnancy. If so, propensity to cardiac dysfunction may itself determine risk of preeclampsia and speckle imaging could take on a role in clinical management of preeclampsia as a sensitive tool for both risk stratification and to monitor response to disease or interventions.

Sources of Funding

This editorial is part of a programme of work supported by the British Heart Foundation (grant numbers FS/06/024 and FS/11/65/28865), the NIHR Oxford Biomedical Research Centre and the Oxford British Heart Foundation Centre for Research Excellence (to P.L.). E.F.D. is supported by a Clarendon Scholarship and A.J.L. by a Commonwealth Commission Scholarship.

Disclosures

None.

References

Table. Previously Reported Changes in Left Ventricular Systolic and Diastolic Function in Mothers During and After pregnancies Complicated by Preeclampsia

<table>
<thead>
<tr>
<th>Timing of study</th>
<th>Systolic Function</th>
<th>Diastolic Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cardiac output</td>
<td>Ejection fraction</td>
</tr>
<tr>
<td>Early pregnancy4–6</td>
<td>↑*</td>
<td>—</td>
</tr>
<tr>
<td>Late pregnancy6,9–13</td>
<td>↓</td>
<td>~ or ↓</td>
</tr>
<tr>
<td>≤1 y postpregnancy11</td>
<td>↓</td>
<td>—</td>
</tr>
<tr>
<td>>1 y postpregnancy14–16</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

TDI indicates tissue Doppler imaging; ~, no difference in women with a preeclamptic pregnancy compared with normotensive pregnancy; ↑, increased in women with a preeclamptic pregnancy compared with normotensive pregnancy; ↓, decreased in women with a preeclamptic pregnancy compared with normotensive pregnancy; *, decreased in those who go onto develop early-onset compared with late-onset preeclampsia; and —, not reported/measured.
Cardiac Dysfunction and Preeclampsia: Can Imaging Give Clues to Mechanism?
Esther F. Davis, Adam J. Lewandowski and Paul Leeson

doi: 10.1161/CIRCIMAGING.112.979831
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/5/6/691

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/