Computed Tomography Myocardial Perfusion Imaging With 320-Row Detector Computed Tomography Accurately Detects Myocardial Ischemia in Patients With Obstructive Coronary Artery Disease

Richard T. George, MD; Armin Arbab-Zadeh, MD, PhD; Julie M. Miller, MD; Andrea L. Vavere, MPH; Frank M. Bengel, MD; Albert C. Lardo, PhD; João A.C. Lima, MD

Background—Computed tomography coronary angiography (CTA) has been shown to be accurate in detecting anatomic coronary arterial obstruction, but is limited for the detection of myocardial ischemia. The primary aim of this study was to assess the accuracy of 320-row computed tomography perfusion imaging (CTP) to detect atherosclerosis causing myocardial ischemia.

Methods and Results—Fifty symptomatic patients with recent single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) underwent a comprehensive cardiac computed tomography (CT) protocol that included 320-CTA, followed by adenosine stress CTP. CTP images were analyzed quantitatively for the presence of subendocardial perfusion deficits. All analyses were blinded to imaging and clinical results. CTA alone was a limited predictor of myocardial ischemia compared with SPECT, with a sensitivity, specificity, positive (PPV) and negative predictive value (NPV) of 56%, 75%, 56%, and 75%, and the area under the receiver operator characteristic curve (AUC) was 0.65 (95% CI, 0.51–0.78, \(P=0.07\)). CTP was a better predictor of myocardial ischemia, with a sensitivity, specificity, PPV, and NPV of 72%, 91%, 81%, and 85%, with an AUC of 0.81 (95% CI, 0.68–0.91, \(P<0.001\)), and was an excellent predictor of myocardial ischemia on SPECT-MPI in the presence of stenosis (\(\geq 50\%\) on CTA), with a sensitivity, specificity, PPV, and NPV of 100%, 81%, 50%, and 100%, with an AUC of 0.92 (95% CI, 0.80–0.97, \(P<0.001\)). The radiation dose for the comprehensive cardiac CT protocol and SPECT were 13.8 ± 2.9 and 13.1 ± 1.7; respectively (\(P=0.15\)).

Key Words: imaging ■ atherosclerosis ■ ischemia ■ perfusion ■ multidetector computed tomography ■ myocardial blood flow ■ SPECT

Coronary computed tomography angiography (CTA) provides high sensitivity and negative predictive value for the detection of obstructive coronary artery disease (CAD).\(^1\)–\(^3\) Its primary strengths are the ability to quantify atherosclerosis and accurately exclude the presence of obstructive CAD.\(^1\)–\(^5\) However, the degree of coronary obstruction measured by CTA or conventional angiography remains a poor predictor of reversible ischemia caused by atherosclerosis.\(^6\)–\(^8\)

Clinical Perspective on p 340

Rest and stress single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become the most common diagnostic test for evaluating patients with symptoms suggestive of obstructive CAD. Studies in diverse populations have established the diagnostic and prognostic value of SPECT-MPI\(^9\),\(^10\) as an effective tool in therapeutic decision making for patients with suspected CAD.\(^11\)

Recent advances in cardiac computed tomography (CT) technology have enabled the assessment of the physiological significance of coronary stenoses using myocardial CT perfusion imaging (CTP).\(^12\)–\(^15\) This promising technology, when combined with coronary CTA, has the capability of evaluating CAD in comprehensive fashion,\(^16\)–\(^18\) and is likely to be most useful in the evaluation of lesions detected by CT angiography.

The primary objective of this study was to determine if adenosine stress 320-row CTP imaging can detect atherosclerosis causing myocardial ischemia in symptomatic patients with suspected CAD.
Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>58.3±10.0</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>29.5±4.8</td>
</tr>
</tbody>
</table>

Methods

Patient Selection

The study was approved by the Johns Hopkins University Institutional Review Board. Patients were enrolled from December 2007, to January 2010, and all participants signed written informed consent. The study included men and nonpregnant women who underwent a clinically indicated SPECT-MPI within the past 60 days (mean: 18.6±12.4 days), with an intermediate to high pretest probability of CAD or prior history of CAD. Exclusion criteria included: history of renal insufficiency, contraindications to iodinated contrast, atrial fibrillation, bronchospastic lung disease, 2nd or 3rd degree heart block, New York Heart Association Class III or IV congestive heart failure, inability to lie flat, history of organ transplant, recent illicit drug use, excessive x-ray CT or fluoroscopy in the past 30 days, or any interim event between studies that would potentially change results (ie, myocardial infarction, bypass surgery, coronary stenting, etc). Baseline characteristics are listed in Table 1. All patients underwent the research CT examination, and 19 patients underwent a clinically indicated invasive coronary angiogram.

Computed Tomography Image Acquisition and Reconstruction

Prior to arrival, patients were asked to refrain from caffeine for 12 hours and hold morning blood pressure medications except for \(\beta \)-blockers. Baseline blood pressure, heart rate, and ECG were acquired prior to CT. Oral or intravenous metoprolol was given if the resting heart rate was greater than 65 beats per minute. Intravenous access was obtained in the right and left antecubital veins for the administration of iodinated contrast and adenosine, respectively, and blood was sampled for serum creatinine measurement. Patients were hydrated with 250 to 500 mL normal saline prior to CT imaging.

320-Row Detector Computed Tomography Acquisition and Reconstruction

A timeline for the comprehensive CT protocol is shown in Figure 1, and the CT imaging acquisition parameters are summarized in Table 2. In summary, patients were placed supine in a 320-row CT (320-CT) scanner (Aquilion One, Toshiba Medical Systems) and attached to a rhythm and automated blood pressure monitor. Four sequential imaging series were performed: (1) coronary artery calcium scoring, as previously described, (2) rest CTA/CTP imaging during the infusion of 60 cc of iopamidol (Isovue, 370 mg iodine/mL, Bracco Diagnostics), (3) stress CTP imaging 10 minutes following rest CTP imaging using the intravenous infusion of adenosine (0.14 mg/kg/min) during continuous ECG monitoring; 4 minutes into the adenosine infusion, 60 cc of iopamidol was infused and stress CTP imaging was performed, and (4) delayed enhanced CT (DECT) imaging was performed 5 minutes later.

Image reconstruction parameters are summarized in Table 2. All contrast enhanced images were reconstructed using beam hardening correction and the phase with least coronary and myocardial motion.

Myocardial Computed Tomography Perfusion Image Analysis

Rest and stress CTP axial images were transferred to an analysis workstation (Myoperfusion, Toshiba Medical Systems). Using multi-planar reformations, rest and stress perfusion images were arranged in the cardiac short axis with a 3 mm slice thickness, and the images were analyzed quantitatively as described previously. In summary, the software automatically and equally divided the myocardium into 3 myocardial layers, the subendocardium, midmyocardium, and subepicardium, using a 16-segment model (apex was excluded). A radiology technologist blinded to all other data made manual adjustments if needed. The software calculated the mean attenuation of each myocardial layer within each segment, and the transmural perfusion ratio (TPR) was calculated as the ratio of the segment specific subendocardial attenuation and the entire subepicardial attenuation at the basal, mid, and distal left ventricle. TPR was considered abnormal when it was <0.99, as described previously. Due to lower attenuation in the basal lateral segments, the basal anterolateral and basal inferolateral walls were considered abnormal only if the adjacent midanterolateral or midinferolateral wall also was abnormal.

A participant was defined positive for myocardial ischemia when the TPR was <0.99 on stress CTP that worsened, compared with the rest CTP in greater than 1 myocardial segment. Fixed myocardial infarction was determined visually by the presence of hyperenhancement on DECT by a single experienced blinded observer (R.T.G.).

Coronary Computed Tomography Angiography Analysis

Computed tomography angiographic images were transferred to a dedicated workstation (Vitrea v. 5.0, Vital Images) for analysis by a level III certified CT angiographer (A.A.-Z.), blinded to all other data. All segments ≥1.5 mm were analyzed using a 19-segment model. Each coronary segment was assessed visually for the percent luminal stenosis, and a vessel supplying a territory was considered obstructive if there was at least 1 segment of a vessel with a ≥50% luminal diameter stenosis. In addition, a luminal diameter stenosis threshold of ≥70% was used in secondary analyses. Uninterpretable segments were excluded from the analysis.

Figure 1. Timeline of a comprehensive cardiac computed tomography (CT) protocol that includes coronary artery calcium scoring (CACS), rest CT angiography and perfusion (CTA), stress CT perfusion (CTP), and delayed enhanced CT (DECT).
Single Photon Emission Computed Tomography Imaging and Analysis

In all patients, stress-rest SPECT-MPI (using technetium-99m sestamibi) was performed with symptom limited treadmill exercise or pharmacological (dipyridamole or adenosine) stress, according to protocols endorsed by the American Society of Nuclear Cardiology, and transferred to an independent nuclear core laboratory for analysis.23 Using a 16-segment model (apex was excluded), a single experienced blinded observer (Board Certified in Nuclear Medicine; F.M.B.) scored myocardial segments using a semiquantitative visual assessment (0=normal, 1=mild reduction in radioisotope, 2=moderate reduction, 3=severe reduction), and reversibility was determined. The summed rest score (SRS) and summed stress score (SSS) were calculated as the sum of scores on the rest and stress images, respectively.9

Radiation Dose Calculations

Computed tomography radiation doses were estimated using the dose length product reported on the scanner and converted to effective dose by multiplying by the constant (k=0.014 mSv/mGy/cm) according to standard methodology outlined in the European Guidelines on Quality Criteria for Computed Tomography.23 Estimates of effective radiation dose from SPECT were calculated by converting millicurie to millisievert.26

Statistical Analysis

Means were expressed ± standard deviation and compared using paired t test. Accuracy was determined by calculating the sensitivity, specificity, positive predictive value, and negative predictive value, and 95% confidence intervals were calculated according to the efficient-score method.27 The area under the receiver operating characteristic (ROC) was calculated and reported with 95% confidence intervals, with a probability value to compare the significance of the ROC curve compared with the null hypothesis of 0.5.28 Correlations between continuous variables were compared using linear regression. The threshold of significance was P<0.05. Statistical analyses were performed using MedCalc v.8.2.1.0 (Mariakerke).

Results

Patient Population

Fifty-three consecutive patients (68% male and mean age 58.3±10 years) were enrolled in the study, and 50 patients completed the protocol. Three patients did not complete the full CT protocol secondary to renal dysfunction on baseline coming (1), allergic reaction to iopamidol (1), and the development of atrial fibrillation during the adenosine infusion (1). Baseline characteristics are shown in Table 1.

Single Photon Emission Computed Tomography-Myocardial Perfusion Imaging Findings

On SPECT-MPI, 20 out of 50(40%) patients and 36 out of 150(24%) vascular territories had perfusion abnormalities. Eighteen patients (90%) had reversible ischemia and 2 patients had fixed perfusion deficits. Of the 36 vascular territories with perfusion abnormalities, 26 (72%) were reversible, 7 of 36 (19%) were partially reversible, and 4 of 36...
(11%) were fixed. The mean (range) SSS and SRS was 4.3±6.6 (0–34) and 1.3±5.2 (0–34), respectively. Eighteen patients had a SSS=0 and 38 patients had a SRS=0.

Coronary Artery Calcium Scoring Findings
The mean Agatston score was 170±281, with a median of 18 and a range of 0 to 1148.

Computed Tomography Coronary Angiography Findings
Computed tomography coronary angiography imaging demonstrated 18 out of 50 (36%) patients and 26 out of 150 (17%) vessels had stenoses graded at ≥50% severity, and 10 out of 50 (20%) patients had stenoses graded at ≥70% severity. Of patients with ≥50% stenosis severity, 12 patients had 1-vessel, 4 patients had 2-vessel, and 2 patients had 3-vessel disease. Overall, 5.1% of coronary segments were deemed uninterpretable. CTA alone was a limited predictor of myocardial ischemia compared with SPECT using a ≥50% and ≥70% threshold (Table 3).

Computed Tomography Perfusion Imaging Findings
Computed tomography perfusion imaging revealed 18 out of 50 (36%) patients and 32 out of 150 (21%) vascular territories had perfusion abnormalities. Of the 32 vascular territories with perfusion abnormalities, 24 out of 32 (75%) were reversible and 7 out of 32 (22%) were partially reversible. There were 2 patients with delayed enhancement on DECT consistent with chronic myocardial infarction, and these matched the 2 patients with fixed perfusion deficits on SPECT. Quantitative analysis of CTP imaging and a representative patient is shown in Figure 2.

Diagnostic Accuracy of Computed Tomography Perfusion Imaging
Overall, the diagnostic accuracy of CTP to detect myocardial ischemia by SPECT was better than CTA (Table 3). In addition, the overall sensitivity and specificity of CTP to detect obstructive atherosclerosis causing myocardial ischemia compared with the reference standard of CTA+SPECT was excellent (Table 4). In addition, we restricted an analysis to those patients or vascular territories with stenoses ≥50%, identified by CTA (N=18) in need of determining the physiological significance of the stenosis. The accuracy of CTP detecting myocardial ischemia in patients with stenoses ≥50% compared with SPECT demonstrated a sensitivity and specificity of 90% and 75%, and the area under the receiver operator characteristic curve (AUC) was 0.83 (95% CI, 0.58–0.96, P=0.001) in the per patient analysis and 100% and 78%, and the AUC was 0.89 (95% CI, 0.70–0.98, P<0.001) in the per vessel/territory analysis, respectively. In these patients with CTA stenoses ≥50%, ROC analysis demonstrated an optimal TPR decrease below the threshold of 0.99 for detecting significant myocardial ischemia (SSS ≥4) to be 0.10, with a sensitivity of 100% and a specificity of 73%, AUC=0.87 (95% CI, 0.74–0.95, P<0.001). There was a strong correlation between the global TPR decrease below the threshold of 0.99 and the SSS in territories with obstructive CAD and ischemia (Figure 3).

Computed Tomography Perfusion Subanalysis Compared With Quantitative Coronary Angiography
In the subset of patients (N=19) with invasive angiography available, we compared the accuracy of CTP in combination with CTA. Because CTP will be used to compliment CTA, we analyzed the accuracy of CTA alone and the combination of CTA and CTP to predict the combination of QCA and SPECT. In the per patient analysis, the sensitivity, specificity, positive predictive value, negative predictive value, and AUC of CTA alone was 100%, 60%, 69%, 100%, and 0.80, and for CTA+CTP was 89%, 90%, 89%, 90%, and 0.89, respectively, demonstrating an improvement specificity and positive predictive value with small reductions in sensitivity and negative predictive value. Furthermore, of the 19 patients that

Table 3. Diagnostic Accuracy of Myocardial Computed Tomography Perfusion and Coronary Computed Tomography Angiography (Using ≥50% and ≥70% Diameter Stenosis Thresholds) To Diagnose Reversible Ischemia Compared With the Reference Standard Single Photon Emission Computed Tomography Myocardial Perfusion Imaging

<table>
<thead>
<tr>
<th></th>
<th>CTP vs SPECT</th>
<th>CTA Stenosis ≥50% vs SPECT</th>
<th>CTA Stenosis ≥70% vs SPECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per patient analysis vs SPECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>72 (46–89) 13/18</td>
<td>56 (31–78) 10/18</td>
<td>39 (18–64) 7/18</td>
</tr>
<tr>
<td>Specificity</td>
<td>91 (74–98) 29/32</td>
<td>75 (56–88) 24/32</td>
<td>91 (74–98) 29/32</td>
</tr>
<tr>
<td>PPV</td>
<td>81 (54–95) 13/16</td>
<td>56 (31–78) 10/18</td>
<td>70 (35–92) 7/10</td>
</tr>
<tr>
<td>NPV</td>
<td>85 (68–94) 29/34</td>
<td>75 (56–88) 24/32</td>
<td>73 (56–85) 29/40</td>
</tr>
<tr>
<td>AUC</td>
<td>0.81 (0.68–0.91) P<0.001</td>
<td>0.65 (0.51–0.78) P=0.07</td>
<td>0.65 (0.50–0.78) P=0.08</td>
</tr>
<tr>
<td>Per vessel analysis vs SPECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity</td>
<td>50 (32–68) 16/32</td>
<td>25 (12–44) 8/32</td>
<td>22 (10–40) 7/32</td>
</tr>
<tr>
<td>Specificity</td>
<td>89 (82–94) 105/118</td>
<td>85 (77–90) 100/118</td>
<td>96 (80–98) 113/118</td>
</tr>
<tr>
<td>PPV</td>
<td>55 (35–73) 16/29</td>
<td>31 (15–52) 8/26</td>
<td>58 (29–84) 7/12</td>
</tr>
<tr>
<td>NPV</td>
<td>87 (79–92) 105/121</td>
<td>81 (72–87) 100/124</td>
<td>82 (74–88) 113/138</td>
</tr>
<tr>
<td>AUC</td>
<td>0.70 (0.62–0.77) P<0.001</td>
<td>0.55 (0.47–0.63) P=0.40</td>
<td>0.59 (0.51–0.67) P=0.13</td>
</tr>
</tbody>
</table>

SPECT indicates single photon emission computed tomography; CTP, computed tomography myocardial perfusion imaging; CTA, computed tomography coronary angiography; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operator characteristic curve.
underwent invasive angiography, 12 patients underwent revascularization (coronary bypass, 12; percutaneous coronary intervention, 7) and 7 did not. CTP was 83% sensitive and 86% specific (AUC: 0.845), and CTA/CTP was 83% sensitive and 100% specific (AUC: 0.917) for revascularization.

Adverse Events
There was 1 serious adverse event that involved a single participant going into atrial fibrillation during adenosine infusion. The adenosine infusion was discontinued and imaging aborted, resulting in normal sinus rhythm without any further intervention.

Radiation Dose
The effective radiation doses are shown in Figure 4.

Discussion
This study demonstrates that myocardial perfusion assessment by computed tomography can detect myocardial ischemia compared with the reference standard SPECT-MPI, and CTP is highly accurate in determining the presence or absence of myocardial ischemia in patients with obstructive CAD in need of physiological assessment when compared with CTA and SPECT-MPI. When combined with coronary CTA, this test can provide anatomic visualization of the coronary arteries, thus
The development of methods based on the injection of radioactive isotopes, first thallium-201 and then technetium-99m based tracers, to index myocardial perfusion revolutionized the clinical assessment of patients with suspected CAD in the last 3 decades and have become one of the most frequently used diagnostic tests in American cardiology. Perfusion abnormalities detected at rest or during exercise, or pharmacological induced stress are excellent markers of flow limiting coronary stenoses and relate directly to prognosis in patients with suspected CAD. However, despite their established clinical use, these tests have well-known limitations, the most important of which is the inability to measure the type, location, and severity of coronary atherosclerosis noninvasively. Moreover, these methods do not permit the quantification of subclinical atherosclerosis currently used for risk factor modification and preventive purposes. Such limitations are in part responsible for referral for angiography of a large number of patients who do not have obstructive CAD, costing patients unnecessary invasive procedures and the nation increased healthcare-associated costs. The development of other tests based on functional contractile alterations detected by ultrasound or ECG changes during traditional stress testing have not impacted the use of SPECT tests significantly because they do not index myocardial perfusion, the most direct consequence of chronic coronary obstruction. The measurement of myocardial perfusion by positron emission tomography or magnetic resonance imaging, although as or more efficacious than SPECT imaging, are expensive and require larger investments in terms of personnel and equipment by healthcare providers and organizations. The advent of computed tomography has challenged this paradigm, at least for patients with low or intermediate probability of having obstructive CAD.

There are several strengths of the current study and the comprehensive cardiac CT protocol implemented that should be highlighted. Compared with prior studies of vasodilator stress CTP imaging, the current study uses a 320-row detector scanner using a protocol with the rest scan performed first, followed by stress scanning in an intermediate to high risk population with abnormal patients having primarily myocardial ischemia. Prior studies from our institution and others have primarily used a protocol with the rest scan performed first, followed by CTP imaging, the current study uses a 320-row detector scanner providing a comprehensive evaluation of atherosclerosis and its direct influence on myocardial perfusion.

The correlation between the CTP and SPECT, as well as the CTP and CT angiography, was excellent (Spearman’s rho = 0.92; 0.87–0.96, 0.87–0.96, respectively, P < 0.001). The current study used a 320-row detector scanner, which is the inability to measure the type, location, and severity of coronary atherosclerosis noninvasively. Moreover, these methods do not permit the quantification of subclinical atherosclerosis currently used for risk factor modification and preventive purposes. Such limitations are in part responsible for referral for angiography of a large number of patients who do not have obstructive CAD, costing patients unnecessary invasive procedures and the nation increased healthcare-associated costs. The development of other tests based on functional contractile alterations detected by ultrasound or ECG changes during traditional stress testing have not impacted the use of SPECT tests significantly because they do not index myocardial perfusion, the most direct consequence of chronic coronary obstruction. The measurement of myocardial perfusion by positron emission tomography or magnetic resonance imaging, although as or more efficacious than SPECT imaging, are expensive and require larger investments in terms of personnel and equipment by healthcare providers and organizations. The advent of computed tomography has challenged this paradigm, at least for patients with low or intermediate probability of having obstructive CAD.

Table 4. Diagnostic Accuracy of Myocardial Computed Tomography Perfusion to Diagnose Reversible Ischemia in the Presence of Obstructive Atherosclerosis (Using ≥50% and ≥70%) Diameter Stenosis Thresholds

<table>
<thead>
<tr>
<th>Stenosis Threshold</th>
<th>Per Patient Analysis</th>
<th>Per Vessel Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥50% + SPECT</td>
<td>CTP vs CT AUC</td>
<td>CTP vs CTA AUC</td>
</tr>
<tr>
<td>50%</td>
<td>0.91 (0.79–0.97)</td>
<td>0.90 (0.78–0.96)</td>
</tr>
</tbody>
</table>

CTA indicates computed tomography coronary angiography; SPECT, single photon emission computed tomography; CT, computed tomography myocardial perfusion imaging; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
with caution. While these studies have firmly established the feasibility of 64-CT myocardial perfusion imaging, cardiac imaging over portions of 1 or 2 heart beats using a 320-CT system allows for several advantages, including targeting a specific portion of the contrast bolus, temporal uniformity of image acquisition, and reductions in radiation and contrast dose. We consider a rest/stress protocol to have several advantages compared with a stress/rest protocol. First, the clinical use of CTA/CTP will take advantage of the high sensitivity and negative predictive value of CTA. A protocol structured with CTA first provides the ability to exclude disease in patients with high negative predictive value and detect subclinical atherosclerosis in patients at risk of future cardiac events. Patients with normal or mildly abnormal studies do not require CTP imaging and can avoid additional testing and the additional radiation exposure. In our study, on average, these patients would receive an effective radiation dose of 4.5 mSv. For those patients with potentially obstructive CAD (stenoses ≥50%), adenosine stress CTP imaging can be performed to determine the physiological significance of these stenoses and determine if a medical versus invasive approach to treatment should be pursued. Only those patients with disease would require exposure to a total effective radiation dose that is comparable with SPECT-MPI alone. There are, of course, disadvantages to this approach. An approach with CTA first requires the administration of beta blockers prior to the CTA, potentially masking the presence of myocardial ischemia. In addition, there is a theoretical risk that contrast could contaminate the stress CT image. However, despite these theoretical risks, these factors did not appear to significantly affect diagnostic accuracy in this study. Rest/stress CTP imaging with beta blockade will be tested further in the large multicenter, international study, the CORE320 study.37

There are several limitations of the current study that are important to point out. First, the per vessel sensitivity of CTP compared with SPECT was limited. It is unclear why this occurred, and these false-negative results could be the result of false-positive SPECT studies. The excellent sensitivity of CTP in detecting obstructive atherosclerosis and myocardial ischemia by CTA+SPECT on a per patient and per vessel basis argues in favor of this. This study used a semiquantitative analysis, TPR. Quantitative CTP analyses can be limited by imaging artifacts such as motion, beam hardening, and reconstruction artifacts, and in the setting of global transmural ischemia may underestimate the presence of ischemia. In addition, CTP is limited in patients at risk of contrast induced nephropathy, and adenosine is contraindicated in patients with high grade atriointerventricular block and bronchospastic lung disease.

Conclusion

This study in patients at intermediate to high risk of CAD demonstrates that CTP imaging can accurately detect myocardial ischemia in patients with evidence of obstructive atherosclerosis. CTP imaging, when combined with coronary CTA, has the potential to transform the management of patients with suspected obstructive CAD.

Acknowledgments

The authors would like to thank Kathy Citro, Katherine Laws, Theresa Caton, Jorge Guzman, John Texter, and Jon Clulow for their assistance in this study.

Sources of Funding

American College of Cardiology Foundation Career Development Award, Donald W. Reynolds Foundation Clinical Cardiovascular Research Center Award, Toshiba Medical Systems Corporation, Astellas Pharma, Inc., and PJ Schafer Memorial Research Grant.

Disclosures

Drs Lima and George received research support from Astellas Pharma United States, Inc. Drs Lima, George, and Lardo receive research support from Toshiba Medical Systems Corporation. Dr. George is a consultant for ICON Medical Imaging. The terms of these arrangements are managed by Johns Hopkins University in accordance with its conflict of interest policies.

References

CLINICAL PERSPECTIVE

Coronary computed tomography angiography (CTA) provides high sensitivity and negative predictive value for the detection of obstructive coronary artery disease (CAD). Its primary strengths are the ability to quantify atherosclerosis and accurately exclude the presence of obstructive CAD. However, the degree of coronary obstruction measured by CTA or conventional angiography remains a poor predictor of reversible ischemia caused by atherosclerosis. Recent advances in cardiac computed tomography (CT) technology have enabled the assessment of the physiologic significance of coronary stenoses using myocardial CT perfusion imaging (CTP). This promising technology, when combined with coronary CTA, has the capability of evaluating CAD in comprehensive fashion and is likely to be most useful in the evaluation of lesions detected by CT angiography. This study demonstrates that myocardial CTP imaging, performed with a 320-detector CT scanner, can accurately detect obstructive atherosclerosis causing myocardial ischemia in symptomatic patients with suspected CAD.
Computed Tomography Myocardial Perfusion Imaging With 320-Row Detector
Computed Tomography Accurately Detects Myocardial Ischemia in Patients With
Obstructive Coronary Artery Disease
Richard T. George, Armin Arbab-Zadeh, Julie M. Miller, Andrea L. Vavere, Frank M. Bengel,
Albert C. Lardo and João A.C. Lima

Circ Cardiovasc Imaging. 2012;5:333-340; originally published online March 23, 2012;
doi: 10.1161/CIRCIMAGING.111.969303
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue,
Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circimaging.ahajournals.org/content/5/3/333

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Cardiovascular Imaging* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Cardiovascular Imaging* is online at:
http://circimaging.ahajournals.org/subscriptions/