Reduced Left Ventricular Torsion Early After Myocardial Infarction Is Related to Left Ventricular Remodeling

Gaetano Nucifora, MD; Nina Ajmone Marsan, MD; Matteo Bertini, MD; Victoria Delgado, MD; Hans-Marc J. Siebelink, MD, PhD; Jacob M. van Werkhoven, MSc; Arthur J. Scholte, MD; Martin J. Schalij, MD, PhD; Ernst E. van der Wall, MD, PhD; Eduard R. Holman, MD, PhD; Jeroen J. Bax, MD, PhD

Background—Left ventricular (LV) torsion is emerging as a sensitive parameter of LV systolic myocardial performance. The aim of the present study was to explore the effects of acute myocardial infarction (AMI) on LV torsion and to determine the value of LV torsion early after AMI in predicting LV remodeling at 6-month follow-up.

Methods and Results—A total of 120 patients with a first ST-segment elevation AMI (mean±SD age, 59±10 years; 73% male) were included. All patients underwent primary percutaneous coronary intervention. After 48 hours, speckle-tracking echocardiography was performed to assess LV torsion; infarct size was assessed by myocardial contrast echocardiography. At 6-month follow-up, LV volumes and LV ejection fraction were reassessed to identity patients with LV remodeling (defined as a ≥15% increase in LV end-systolic volume). Compared with control subjects, peak LV torsion in AMI patients was significantly impaired (1.54±0.64°/cm vs 2.07±0.27°/cm, P<0.001). By multivariate analysis, only LV ejection fraction (β=0.36, P<0.001) and infarct size (β=−0.47, P<0.001) were independently associated with peak LV torsion. At 6-month follow-up, 19 patients showed LV remodeling. By multivariate analysis, only peak LV torsion (odds ratio=0.77; 95% CI, 0.65–0.92; P=0.003) and infarct size (odds ratio=1.04; 95% CI, 1.01–1.07; P=0.021) were independently related to LV remodeling. Peak LV torsion provided modest but significant incremental value over clinical, echocardiographic, and myocardial contrast echocardiography variables in predicting LV remodeling. By receiver-operating characteristics curve analysis, peak LV torsion ≥1.44°/cm provided the highest sensitivity (95%) and specificity (77%) to predict LV remodeling.

Conclusions—LV torsion is significantly impaired early after AMI. The amount of impairment of LV torsion predicts LV remodeling at 6-month follow-up. (Circ Cardiovasc Imaging. 2010;3:433-442.)

Key Words: acute myocardial infarction ■ infarct size ■ left ventricular torsion ■ left ventricular remodeling

Remodeling of the left ventricle (LV) after acute myocardial infarction (AMI) is associated with the development of heart failure and a poor survival rate.1,2 Accordingly, identification of patients prone to develop postinfarction LV remodeling represents an important issue in clinical cardiology. These considerations have stimulated research for new parameters able to provide quantitative and objective estimation of post-AMI myocardial damage and to identify patients at risk of LV remodeling.3

Clinical Perspective on p 442

The systolic twisting motion of the LV along its longitudinal axis, resulting from opposite rotation of the LV apex compared with the base, is emerging as an important, sensitive parameter of LV systolic function.4 Recently, echocardiographic assessment of LV torsional mechanics based on speckle-tracking analysis has been introduced and validated against sonomicrometry and magnetic resonance imaging.5,6 In the clinical setting, however, not much data on changes in LV torsion after AMI are available,7,8 and no specific data exist concerning the role of LV torsion in predicting postinfarction LV remodeling.

Accordingly, the aim of the present evaluation was 2-fold. First, we sought to determine the correlates of LV torsion after AMI, and second, we aimed to explore the relation between LV torsion and the development of LV remodeling at 6-month follow-up.

Methods

Patient Population and Protocol

The population consisted of 146 consecutive patients admitted to the coronary care unit because of a first ST-segment elevation AMI.

Received November 25, 2009; accepted May 5, 2010.

From the Department of Cardiology (G.N., N.A.M., V.D., H.-M.J.S., J.M.v.W., A.J.S., M.J.S., E.E.v.d.W., E.R.H., J.J.B.), Leiden University Medical Center, Leiden, the Netherlands; Department of Cardiopulmonary Sciences (G.N.), University Hospital Santa Maria della Misericordia, Udine, Italy; and the Interuniversity Cardiology Institute of the Netherlands (E.E.v.d.W.), Utrecht, the Netherlands.

Correspondence to Jeroen J. Bax, MD, PhD, Leiden University Medical Center, Department of Cardiology, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, The Netherlands. E-mail J.J.Bax@lumc.nl

© 2010 American Heart Association, Inc.

Circ Cardiovasc Imaging is available at http://circimaging.ahajournals.org DOI: 10.1161/CIRCIMAGING.109.926196
Diagnosis of AMI was made on the basis of typical ECG changes and/or ischemic chest pain associated with elevation of cardiac biomarkers. All patients underwent immediate coronary angiography and primary percutaneous coronary intervention (PCI). The infarct-related artery was identified during coronary angiography and by ECG criteria. During PCI, final TIMI (Thrombolysis In Myocardial Infarction) flow was assessed.

Clinical evaluation included 2-dimensional (2D) echocardiography with speckle-tracking analysis to assess LV global longitudinal strain (GLS) and torsion, and myocardial contrast echocardiography (MCE) was performed 48 hours after PCI to assess the extent of perfusion abnormalities and infarct size. At 6-month follow-up, 2D echocardiography was performed to reassess LV volumes and ejection fraction (LVEF). These echocardiographic examinations are part of the routine, comprehensive assessment of AMI patients in our clinics.

In addition, 20 subjects without evidence of structural heart disease and without known risk factors for coronary artery disease, matched for age, sex, and body surface area and who underwent 2D echocardiography, were included as a normal control group. These individuals were derived from the echocardiographic database and were clinically referred for echocardiographic evaluation because of atypical chest pain, palpitations, or syncope without murmur.

To determine the reduction in LV torsion after AMI, patient data were compared with data from the normal controls. In addition, the independent correlates of LV torsion after AMI were investigated, and the role of LV torsion in predicting LV remodeling (defined as a ≥15% increase in LV end-systolic volume [ESV]) at 6-month follow-up was assessed.1,10

2D Echocardiography
All AMI patients and control subjects were imaged in the left lateral decubitus position with a commercially available system (Vivid 7 Dimension, GE Healthcare, Horten, Norway) equipped with a 3.5-MHz transducer and a standard 2D imaging and color-Doppler data were acquired from parasternal and apical views (4-, 2-, and 3-chamber views) and digitally stored in cine-loop format; analyses were subsequently performed offline with EchoPAC version 7.0.0 software (GE Healthcare). LV end-diastolic volume (LVEDV) and LVESV were measured according to Simpson’s biplane method, and LVEF was calculated as ([LVEDV−LVESV]/LVEDV)×100.11

Qualitative assessment of regional wall motion was performed according to the 16-segment model of the American Society of Echocardiography, and the global wall-motion score index (WMSI) was calculated for each patient.12 As previously described,12 transmural and pulmonary vein pulsed-wave Doppler tracings were used to classify diastolic function as (1) normal, (2) diastolic dysfunction grade 1 (mild), (3) diastolic dysfunction grade 2 (moderate), or (4) diastolic dysfunction grade 3 (severe).

Table 1. Baseline Clinical and Echocardiographic Characteristics of Control Subjects and AMI Patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Control Subjects (n=20)</th>
<th>AMI Patients (n=120)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>56±10</td>
<td>59±10</td>
<td>0.37</td>
</tr>
<tr>
<td>Male</td>
<td>15 (75%)</td>
<td>87 (73%)</td>
<td>0.82</td>
</tr>
<tr>
<td>Diabetes</td>
<td>13 (11%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of coronary artery disease</td>
<td>45 (37%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>16 (13%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>43 (36%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current or previous smoking</td>
<td>67 (56%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMI</td>
<td>55 (46%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infarct-related artery</td>
<td>55 (46%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left anterior descending</td>
<td>21 (17%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right coronary</td>
<td>44 (37%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivessel disease</td>
<td>41 (34%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIMI flow grade 3</td>
<td>101 (84%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak troponin T, μg/L</td>
<td>3.04 (1.65–7.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVEDV, mL</td>
<td>103±22</td>
<td>104±27</td>
<td>0.91</td>
</tr>
<tr>
<td>LVESV, mL</td>
<td>40±10</td>
<td>55±21</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>61±7</td>
<td>48±9</td>
<td><0.001</td>
</tr>
<tr>
<td>LV diastolic longitudinal length, cm</td>
<td>8.6±0.6</td>
<td>8.3±0.8</td>
<td>0.18</td>
</tr>
<tr>
<td>WMSI</td>
<td>1.72±0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diastolic function</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 0</td>
<td>20 (100%)</td>
<td>47 (39%)</td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>63 (52%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>8 (7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>2 (2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak LV GLS, %</td>
<td>−19.4±1.7</td>
<td>−14.0±3.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV basal rotation, °</td>
<td>−6.8±2.7</td>
<td>−5.1±2.7</td>
<td>0.013</td>
</tr>
<tr>
<td>Peak LV apical rotation, °</td>
<td>11.6±2.8</td>
<td>8.4±4.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV twist, °</td>
<td>17.7±2.1</td>
<td>12.7±5.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV torsion, °/cm</td>
<td>2.07±0.27</td>
<td>1.54±0.64</td>
<td><0.001</td>
</tr>
<tr>
<td>MPI</td>
<td>1.28 (1.08–1.50)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations are as defined in text.

Speckle-Tracking Analysis

Longitudinal Strain Analysis

Longitudinal strain analysis of the LV was performed by speckle-tracking imaging (EchoPAC version 7.0.0). Gray-scale 2D apical images of the LV (4-, 2-, and 3-chamber views) were used with a frame rate ranging from 60 to 100 frames per second. From an end-systolic frame, the endocardial border was manually traced, and the software automatically traces 2 more concentric regions of interest (ROIs) to include the entire myocardial wall. Speckle-tracking analysis detects and tracks the unique myocardial ultrasound patterns frame by frame. The in-plane frame-to-frame displacement of each pattern over time is used to derive strain. The software automatically validates the segmental tracking throughout the cardiac cycle and allows the operator further adjustment of the ROI to improve tracking quality. As previously described,14 mean GLS was calculated, as an index of global LV systolic function, by averaging the GLSs obtained automatically from each apical view.

Torsional Mechanics Analysis

Speckle-tracking analysis was applied to evaluate LV basal and apical rotations, LV twist, and LV torsion. Parasternal short-axis images of the LV were acquired at 2 different levels: (1) basal level, identified by the mitral valve, and (2) apical level, as the smallest cavity achievable distally to the papillary muscles (by moving the probe downward and slightly laterally, if needed). Frame rate was 60 to 100 frames per second, and 3 cardiac cycles for each short-axis level were stored in cine-loop format for offline analysis (EchoPAC version 7.0.0). The endocardial border was traced at an end-systolic frame, and the ROI was chosen to fit the whole myocardium. The software allows the operator to check and validate the tracking quality and to adjust the endocardial border or modify the width of the ROI if needed. Each short-axis image was automatically divided into 6 standard segments: septal, anteroseptal, anterior, lateral, posterior, and inferior. The software...
calculated LV rotation from the apical and basal short-axis images as the average angular displacement of the 6 standard segments by referring to the ventricular centroid, frame by frame. Counterclockwise rotations were marked as positive values and clockwise rotations, as negative values when viewed from the LV apex. LV twist was defined as the net difference (in degrees) of apical and basal rotations at isochronal time points. LV torsion was then calculated as the ratio between LV twist (in degrees) and...
the LV diastolic longitudinal length (in cm) between the LV apex and the mitral plane.14

Twenty patients were randomly selected to assess the reproducibility of peak LV twist. Bland-Altman analysis was performed to evaluate intraobserver and interobserver agreement by repeating the analysis 1 month later by the same observer and by a second independent observer. Intraobserver agreement was excellent. According to Bland-Altman analysis, the mean difference ± 2 SD for peak LV twist was 0.05 ± 0.35°. Interobserver agreement was also good. According to Bland-Altman analysis, the mean difference ± 2 SD for peak LV twist was 0.16 ± 1.50°.

Myocardial Contrast Echocardiography

Immediately after 2D echocardiography, MCE was performed to evaluate myocardial perfusion to assess infarct size after AMI. The same ultrasound system was used, and the 3 standard apical views were acquired with a low-power technique (mechanical index of 0.1 to 0.26). Background gains were set so that minimal tissue signal was seen, and the focus was set at the level of the mitral valve. Luminity (Perflutren, Bristol-Myers Squibb Pharma, Brussels, Belgium) was used as the contrast agent. Each patient received an infusion of 1.3 mL of echo contrast diluted in 50 mL of 0.9% NaCl solution through a 20-gauge intravenous catheter in a proximal forearm vein. Infusion rate was initially set at 4.0 mL/min and then titrated to achieve optimal myocardial enhancement without attenuation artifacts.15 Machine settings were optimized to obtain the best possible myocardial opacification with minimal attenuation. At least 15 cardiac cycles after high-mechanical-index (1.7) microbubble destruction were stored in cine-loop format for offline analysis (EchoPAC version 7.0.0).16 The LV was divided according to a standard 16-segment model, and a semiquantitative scoring system was used to assess contrast intensity after microbubble destruction: (1) normal/homogenous opacification, (2) reduced/patchy opacification, or (3) minimal or absent contrast opacification.11,16 Minimal or absent contrast opacification identifies myocardial segments with a >50% transmural extent of infarction with high accuracy, as previously demonstrated by Janardhanan et al.17 A myocardial perfusion index (MPI), indicating the extent of infarct size, was derived by adding contrast scores of all segments and dividing by the total number of segments.16,18

Twenty patients were randomly selected to assess the reproducibility of perfusion scoring. A weighted χ2 test was performed to evaluate intraobserver and interobserver agreement by repeating the analysis 1 month later by the same observer and by a second independent observer. Both intraobserver and interobserver agreements were good (weighted χ2 = 0.86 and = 0.84, respectively). To avoid measurements bias, all analyses were performed in blinded fashion.

Statistical Analysis

Continuous variables are expressed as mean±SD, when normally distributed, and as median and interquartile range, when not normally distributed. Categorical data are presented as absolute numbers and percentages.

Differences in continuous variables between 2 groups were assessed with the Student t test or Mann-Whitney U test, where appropriate. χ2 or Fisher’s exact test, where appropriate, was computed to assess differences in categorical variables. Differences in continuous variables between >2 groups were assessed by 1-way ANOVA or Kruskal-Wallis test, where appropriate; when the result of the analysis was significant, a post hoc test with Bonferroni’s correction was applied.

Univariate and multivariate linear-regression analyses (with an automatic stepwise selection procedure with backward elimination) were performed to evaluate the relation between peak LV torsion among AMI patients and the following variables: age, sex, infarct location (anterior versus nonanterior), multivessel disease, TIMI flow grade 3 after PCI, peak troponin T value, LVEDV, LVESV, LVEF, WMSI, presence of diastolic dysfunction, peak LV GLS, and MPI. Age and sex were entered into the multivariate model inde-

Table 2. Univariate and Multivariate Linear Regression Analyses to Determine the Independent Correlates of Peak LV Torsion in AMI Patients

<table>
<thead>
<tr>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>P Value</td>
</tr>
<tr>
<td>Age</td>
<td>−0.080</td>
</tr>
<tr>
<td>Male</td>
<td>−0.048</td>
</tr>
<tr>
<td>AMI</td>
<td>−0.27</td>
</tr>
<tr>
<td>Multivessel disease</td>
<td>−0.13</td>
</tr>
<tr>
<td>TIMI flow grade 3</td>
<td>0.25</td>
</tr>
<tr>
<td>Peak troponin T</td>
<td>−0.40</td>
</tr>
<tr>
<td>LVEDV</td>
<td>−0.25</td>
</tr>
<tr>
<td>LVESV</td>
<td>−0.51</td>
</tr>
<tr>
<td>LVEF</td>
<td>0.65</td>
</tr>
<tr>
<td>WMSI</td>
<td>−0.66</td>
</tr>
<tr>
<td>Presence of diastolic dysfunction</td>
<td>−0.23</td>
</tr>
<tr>
<td>Peak LV GLS</td>
<td>−0.56</td>
</tr>
<tr>
<td>MPI</td>
<td>−0.69</td>
</tr>
</tbody>
</table>

Abbreviations are as defined in text.

![Figure 2. Linear regression analysis illustrating the relation between peak LV torsion and MPI.](image)

![Figure 3. Relation between peak LV torsion and number of myocardial segments with minimal or absent contrast opacification.](image)
pendently of their probability value by univariate analysis and were kept fixed throughout the stepwise selection procedure. Regarding the remaining variables, only those with a probability value < 0.20 by univariate analysis were entered as covariates in the multivariate model. Linear-regression analyses were performed to evaluate the relation between peak LV torsion at baseline and LVESV at 6-month follow-up, as well as the change in LVESV after 6-month follow-up compared with the baseline value.

Univariate and multivariate logistic-regression analyses (with automatic stepwise selection procedure with backward elimination) were performed to evaluate the relation between the occurrence of LV remodeling at 6-month follow-up and the following baseline variables: age, sex, infarct location (anterior versus nonanterior), multivessel disease, TIMI flow grade 3 after PCI, peak troponin T value, LVEDV, LVESV, LVEF, WMSI, presence of diastolic dysfunction, peak LV GLS, peak LV torsion, and MPI. Age, sex, and LVESV were entered into the multivariate model independently of their probability value by univariate analysis and were kept fixed throughout the stepwise selection procedure. Regarding the remaining variables, only those with a probability value < 0.20 by univariate analysis were entered as covariates in the multivariate model. The incremental predictive value of peak LV torsion over clinical, echocardiographic, and MCE variables was assessed by calculating the global R^2 values.

Receiver-operator-characteristics curve analysis was performed to determine the accuracy of baseline peak LV torsion to predict LV remodeling at 6-month follow-up in the overall patient population and among anterior and nonanterior AMI patients. A probability value < 0.05 was considered statistically significant. Statistical analysis was performed with the SPSS software package (SPSS 15.0, Chicago, Ill).

Results

Reliable speckle-tracking curves for rotation analysis and diagnostic MCE data were obtained in 120 patients; consequently, 26 patients were excluded from further analysis. Of note, no significant difference was observed between included and excluded patients with regard to age (59 ± 10 versus 57 ± 10 years, P = 0.31), male sex (87 [73%] versus 17 [65%], P = 0.47), anterior location of AMI (55 [46%] versus 13 [50%], P = 0.70), and peak value of troponin T (3.04 μg/L [1.65 to 7.03] versus 3.18 μg/L [1.74 to 12.62], Table 3. Baseline Clinical and Echocardiographic Characteristics of AMI Patients Without vs With LV Remodeling

<table>
<thead>
<tr>
<th></th>
<th>No LV Remodeling (n = 93)</th>
<th>LV Remodeling (n = 19)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>58 ± 10</td>
<td>61 ± 9</td>
<td>0.20</td>
</tr>
<tr>
<td>Male</td>
<td>66 (71%)</td>
<td>15 (79%)</td>
<td>0.48</td>
</tr>
<tr>
<td>Diabetes</td>
<td>9 (10%)</td>
<td>2 (11%)</td>
<td>0.91</td>
</tr>
<tr>
<td>Family history of coronary artery disease</td>
<td>36 (39%)</td>
<td>7 (37%)</td>
<td>0.88</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>13 (14%)</td>
<td>2 (11%)</td>
<td>0.74</td>
</tr>
<tr>
<td>Hypertension</td>
<td>34 (37%)</td>
<td>6 (32%)</td>
<td>0.68</td>
</tr>
<tr>
<td>Current or previous smoking</td>
<td>54 (58%)</td>
<td>9 (47%)</td>
<td>0.39</td>
</tr>
<tr>
<td>AMI</td>
<td>35 (38%)</td>
<td>13 (68%)</td>
<td>0.013</td>
</tr>
<tr>
<td>Multivessel disease</td>
<td>29 (31%)</td>
<td>9 (47%)</td>
<td>0.18</td>
</tr>
<tr>
<td>TIMI flow grade 3</td>
<td>81 (87%)</td>
<td>14 (74%)</td>
<td>0.16</td>
</tr>
<tr>
<td>Peak troponin T, μg/L</td>
<td>2.54 (1.29–5.25)</td>
<td>9.63 (4.96–12.51)</td>
<td><0.001</td>
</tr>
<tr>
<td>LVEDV, mL</td>
<td>101 ± 23</td>
<td>106 ± 34</td>
<td>0.59</td>
</tr>
<tr>
<td>LVESV, mL</td>
<td>51 ± 15</td>
<td>63 ± 24</td>
<td>0.036</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>50 ± 8</td>
<td>40 ± 8</td>
<td><0.001</td>
</tr>
<tr>
<td>LV diastolic longitudinal length, cm</td>
<td>8.2 ± 0.7</td>
<td>8.3 ± 0.6</td>
<td>0.76</td>
</tr>
<tr>
<td>WMSI</td>
<td>1.63 ± 0.30</td>
<td>2.05 ± 0.21</td>
<td><0.001</td>
</tr>
<tr>
<td>Presence of diastolic dysfunction</td>
<td>52 (56%)</td>
<td>16 (84%)</td>
<td>0.021</td>
</tr>
<tr>
<td>Peak LV GLS, %</td>
<td>−15.0 ± 3.3</td>
<td>−11.1 ± 3.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV basal rotation, °</td>
<td>−5.4 ± 2.6</td>
<td>−4.6 ± 2.5</td>
<td>0.20</td>
</tr>
<tr>
<td>Peak LV apical rotation, °</td>
<td>9.7 ± 4.1</td>
<td>3.5 ± 3.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV twist, °</td>
<td>14.4 ± 4.3</td>
<td>6.6 ± 3.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Peak LV torsion, °/cm</td>
<td>1.75 ± 0.51</td>
<td>0.80 ± 0.44</td>
<td><0.001</td>
</tr>
<tr>
<td>MPI</td>
<td>1.19 (1.00–1.41)</td>
<td>1.75 (1.38–1.81)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Medical therapy at discharge

- Antiplatelet agents: 93 (100%) vs 19 (100%); 1.00
- Angiotensin-converting enzyme inhibitors and/or angiotensin receptor blockers: 93 (100%) vs 19 (100%); 1.00
- β-blockers: 89 (96%) vs 18 (95%); 1.00
- Statins: 93 (100%) vs 19 (100%); 1.00

Abbreviations are as defined in text.
Significantly reduced peak LV basal rotation (2.7° versus 5.1°, \(P_{0.001}\)). Among AMI patients, the infarct-related artery was the left anterior descending coronary artery in 55 (46%) patients; obstructive multivessel disease (ie, anterior descending coronary artery in 55 (46%) patients; obstructive multivessel disease (ie, >1 vessel with a luminal narrowing ≥70%) was present in 41 (34%) patients. Peak value of troponin T was 3.04 μg/L (1.65 to 7.03 μg/L). Mean LVEF was 48±9%.

Compared with control subjects, AMI patients had significantly reduced peak LV basal rotation (−5.1±2.7° versus −6.8±2.7°, \(P_{0.013}\)), reduced peak LV apical rotation (8.4±4.6° versus 11.6±2.8°, \(P_{<0.001}\)), and consequently decreased peak LV twist (12.7±5.2° versus 17.7±2.1°, \(P_{<0.001}\)) and peak LV torsion (1.54±0.64°/cm versus 2.07±0.27°/cm, \(P_{<0.001}\)). Among AMI patients, those with an anterior AMI had significantly lower peak LV apical rotation, LV twist, and LV torsion compared with the remaining AMI patients (6.5±4.3° versus 10.1±4.2°, \(P_{<0.001}\); 11.1±5.4° versus 14.0±4.7°, \(P_{=0.002}\); and 1.35±0.65°/cm versus 1.70±0.58°/cm, \(P_{=0.003}\), respectively), whereas peak LV basal rotation was not different (−5.4±2.6° versus −4.9±2.8°, \(P_{=0.31}\)). Of note, no significant difference was observed in peak LV basal rotation, apical rotation, LV twist, and LV torsion between patients (n=37) with anterior AMI due to proximal LAD occlusion versus patients (n=18) with anterior AMI due to mid or distal LAD occlusion (−5.2±2.5° versus −5.8±2.7°, \(P_{=0.38}\); 6.9±4.3° versus 5.6±4.2°, \(P_{=0.30}\); 11.4±5.2° versus 10.7±5.8°, \(P_{=0.67}\); and 1.36±0.63°/cm versus 1.35±0.72°/cm, \(P_{=0.95}\), respectively). Examples of LV rotational mechanics curves obtained by speckle-tracking analysis in a control subject and in a patient with AMI are shown in Figure 1.

Determinants of LV Torsion Among AMI Patients

Table 2 shows the results of univariate and multivariate linear regression analyses performed to determine the factors related to peak LV torsion among AMI patients. By univariate analysis, several variables were significantly related to peak LV torsion: anterior AMI, TIMI flow grade 3 after PCI, peak troponin T value, LVEDV, LVESV, LVEF, WMSI, presence of diastolic dysfunction, peak LV GLS, and MPI. However, by multivariate analysis, only LVEF (\(β=0.36, P_{<0.001}\)) and MPI (\(β=-0.47, P_{<0.001}\)) were independently associated with peak LV torsion. The relation between peak LV torsion and MPI is shown in Figure 2.

Patients without myocardial segments with minimal or absent contrast opacification had higher peak LV torsion compared with patients with ≥1 myocardial segment with minimal or absent contrast opacification (1.84±0.49°/cm versus 1.27±0.63°/cm, \(P_{<0.001}\)). In addition, a progressive reduction of peak LV torsion with increasing number of...
myocardial segments with minimal or absent contrast opaci-
fication was observed (Figure 3).

LV Remodeling at 6-Month Follow-Up

Eight of 120 AMI patients included in the initial population
did not complete the 6-month follow-up; consequently, data
at baseline and at 6-month follow-up were available for 112
patients. At 6-month follow-up, mean LVEDV was 114±37
mL, whereas mean LVESV was 54±29 mL and mean LVEF
was 55±10%. A total of 19 patients developed LV
remodeling.

Baseline clinical and echocardiographic characteristics of
AMI patients with versus without LV remodeling are sum-
marized in Table 3. At baseline, patients who developed LV
remodeling had larger LVESVs (P=0.036), lower LVEFs
(P<0.001), and higher MPIS (P<0.001), indicating larger
infarct size. Regarding LV rotational mechanics para-
eters, at baseline patients with LV remodeling had signifi-
cantly lower peak LV apical rotation (P<0.001), peak LV
twist (P<0.001), and peak LV torsion (P<0.001) com-
pared with patients without LV remodeling; conversely, no
difference in peak LV basal rotation was observed between
the 2 groups. Patients with more impaired peak LV torsion
at baseline had larger LVESVs at 6-month follow-up and a
higher change in LVESV in the 6-month follow-up period
(Figure 4).

Table 4 shows the results of univariate and multivariate
logistic regression analyses performed to determine the rela-
tion between clinical and echocardiographic characteristics at
baseline and LV remodeling at 6-month follow-up. By uni-
variate analysis, several variables were significantly re-
lated to LV remodeling: anterior AMI, peak troponin T value,
LVESV, LVEF, WMSI, presence of diastolic dysfunction,
peak LV GLS, peak LV torsion, and MPI. However, by
multivariate analysis, only peak LV torsion (odds ratio=0.77;
95% CI, 0.65 to 0.92; P=0.003) and MPI (odds ratio=1.04;
95% CI, 1.01 to 1.07; P=0.021) were independently related
to the development of LV remodeling. Furthermore, peak LV
torsion provided modest but significant incremental value
over clinical, echocardiographic, and MCE variables in pre-
dicting LV remodeling (Figure 5). By receiver-operator-
characteristics curve analysis (Figure 6), peak LV torsion
≤1.44°/cm provided the highest sensitivity (95%) and spec-
ificity (77%) to predict LV remodeling; diagnostic accuracy
was high in both anterior and nonanterior AMI patients
(Figure 6).

Discussion

The results of the present evaluation show that LV torsion is
significantly impaired early after AMI, owing to a reduction
of both basal and apical rotations. Infarct size (assessed by
MCE) was independently related to LV torsion. In addition,
LV torsion early after AMI was significantly and indepen-
dently related to the occurrence of LV remodeling at 6-month
follow-up.

Impact of AMI on LV Rotational Mechanics

Previous experimental and clinical studies have consistently
shown an impairment of LV torsional deformation in the
setting of acute and chronic MI.7,8,18–21 In addition, LV
torsion was related to global LV systolic function and the
extent of wall-motion abnormalities.7,8,21 The present evalua-
tion confirms and extends these previous observations. LV
systolic function was indeed significantly related to LV
torsion. More important, an independent correlation between
infarct size (assessed by MCE and expressed as MPI) and LV
torsion was noted on multivariate analysis. The larger damage
of the LV subepicardial myofibers and the greater disarrange-
ment of the typical architecture of LV myofibers secondary to
larger infarcts may explain the observed relation between infarct size and LV torsion.

Epicardial myofibers are indeed extremely important to maintain LV torsional deformation.4 Epicardial myofibers (compared with endocardial fibers) produce larger torque (related to the larger radius) and determine the overall direction of rotation.4 Damage to epicardial fibers therefore appears mandatory for an impairment of LV torsional mechanics. Indeed, the present evaluation underscores that larger infarcts (as indicated by higher MPI values), leading to more extensive, transmural damage (spreading to epicardial myofibers),17 result in a larger impairment of LV torsion. Previous experimental studies in an occlusion-reperfusion model provide evidence for this hypothesis by showing that LV torsion was impaired in the presence of transmural ischemia, whereas LV torsion was preserved in the presence of subendocardial ischemia only.22,23 In addition, LV myofibers have a typical spiral architecture that is also extremely important in determining the LV systolic wringing motion. Large infarcts may be associated with extensive distortion of the typical architecture of LV myofibers, altering their obliquity and eventually impairing LV torsion.24

Role of LV Torsion in Predicting LV Remodeling

Besides being strictly related to the myocardial damage after AMI, LV torsion at baseline was found to be a strong predictor of LV remodeling at 6-month follow-up; interestingly, this relation remained even after adjustment for other univariate predictors of LV remodeling, including infarct size (expressed as MPI). Peculiar properties of the LV systolic twisting motion may explain this finding.

LV torsion indeed is not simply an index of global LV systolic function; previous mathematical models revealed the essential role of LV torsion in optimizing LV oxygen demand and the efficiency of LV systolic thickening by uniformly distributing myofiber stress across the myocardial wall.25 A significant impairment of LV torsion after AMI will therefore result in increased myofiber stress and oxygen demand of the remaining noninfarcted myocardium. This low-efficiency state would further impair myocardial contractility, possibly representing the initial step of a vicious circle of progressive LV dilatation and decline in LV systolic function.18,24

Clinical Implications

The present evaluation underscores the value of LV torsion as a sensitive global parameter of LV systolic myocardial performance. Its impairment early after AMI is strictly related to the extent of myocardial damage and possibly plays an important role in the development of LV remodeling. Indeed, peak LV torsion provided modest but significant incremental value over clinical, echocardiographic, and MCE variables in predicting LV remodeling. Accordingly, this parameter may be used in clinical practice as an early marker for risk stratification. Early assessment of LV torsion after AMI by speckle tracking echocardiography could identify patients (with reduced LV torsion) who may benefit from aggressive medical therapy to prevent LV remodeling, heart failure, and poor outcome.

Limitations

Some limitations should be acknowledged. First, only patients with ST-segment elevation AMI were included; consequently, the results cannot be extrapolated to patients with non–ST-segment elevation AMI. Another important limitation concerns the acquisition of short-axis images. The acquisition of true LV apical short-axis images is indeed
dependent on the acoustic window (more than the basal short-axis view) and may be technically difficult to acquire in some patients. In addition, transducer position has a strong impact on the assessment of apical rotation by speckle-tracking echocardiography. It should, however, be emphasized that the most caudal transducer position was used to acquire the parasternal short-axis apical view; moreover, all patients without true LV apical short-axis images were not included in the present evaluation. Furthermore, motion throughout the planes at the basal level may reduce the accuracy of measurement of LV basal rotation. Finally, the impairment of LV torsion observed early after AMI may be partially related to the presence of myocardial stunning; further studies are needed to assess the evolution of LV torsion after the acute phase of AMI.

Conclusions
LV torsion is significantly impaired early after AMI. The amount of impairment of LV torsion is related to infarct size. In addition, LV torsion at baseline predicts the occurrence of LV remodeling at 6-month follow-up, with modest but significant incremental value over clinical, echocardiographic, and MCE variables.

Sources of Funding
Gaetano Nucifora is financially supported by a research fellowship of the European Association of Percutaneous Cardiovascular Interventions (Sophia Antipolis, France). Nina Ajmone Marsan and Victoria Delgado are financially supported by a Research Fellowship of the European Society of Cardiology (Utrecht, the Netherlands). Jeroen J. Bax has research grants from Biotronik (Berlin, Germany), Boston Scientific (Natick, Mass), and Medtronic (Minneapolis, Minn). MCE variables.

Disclosures
Martin J. Schalij has research grants from Biotronik (Berlin, Germany), Boston Scientific (Natick, Mass), and Medtronic (Minneapolis, Minneapolis, Minn). Jeroen J. Bax has research grants from Biotronik (Berlin, Germany), BMS Medical Imaging (North Billerica, Mass), Boston Scientific (Natick, Mass), Edwards Lifesciences (Irvine, Calif), GE Healthcare (Buckinghamshire, United Kingdom), Medtronic (Minneapolis, Minneapolis, Minn), and St. Jude Medical (St. Paul, Minn). The other authors have nothing to disclose.

References
4. Lang RM, Biirer M, Devereux RB, Emmanouilides GC, Foster E, Pelliatti PA, Picard MH, Roman M, Seward J, Shanewie JS, Solmon SD, Spencer K, Sutton MS, Stewart WJ. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–1463.
CLINICAL PERSPECTIVE

The systolic twisting motion of the left ventricle (LV) along its longitudinal axis, resulting from the opposite rotation of the LV apex compared with the base, is emerging as an important, sensitive parameter of LV systolic function. However, not much data on changes in LV torsion after acute myocardial infarction (AMI) are available, and no specific data exist concerning the role of LV torsion in predicting postinfarction LV remodeling. The results of the present evaluation show that LV torsion (evaluated by speckle-tracking echocardiography) is significantly impaired early after AMI, owing to a reduction of both basal and apical rotation. The infarct size was independently related to LV torsion. In addition, LV torsion early after AMI was significantly and independently related to the occurrence of LV remodeling at 6-month follow-up, with incremental predictive value over other clinical and echocardiographic variables. By receiver-operating characteristics curve analysis, peak LV torsion ≤1.44°/cm provided the highest sensitivity (95%) and specificity (77%) to predict LV remodeling. According to the results of the present study, this parameter may be used in clinical practice as an early marker for risk stratification of patients with AMI. Early assessment of LV torsion after AMI by speckle-tracking echocardiography could identify patients (with reduced LV torsion) who may benefit from aggressive medical therapy to prevent LV remodeling, heart failure and poor outcome.
Reduced Left Ventricular Torsion Early After Myocardial Infarction Is Related to Left Ventricular Remodeling

Gaetano Nucifora, Nina Ajmone Marsan, Matteo Bertini, Victoria Delgado, Hans-Marc J. Siebelink, Jacob M. van Werkhoven, Arthur J. Scholte, Martin J. Schalij, Ernst E. van der Wall, Eduard R. Holman and Jeroen J. Bax

Circ Cardiovasc Imaging. 2010;3:433-442; originally published online May 17, 2010; doi: 10.1161/CIRCIMAGING.109.926196

Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/3/4/433

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Imaging_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Imaging_ is online at:
http://circimaging.ahajournals.org//subscriptions/