DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients With Coronary Artery Disease

Philip A. Read, MA, MRCP; Fakhar Z. Khan, MA, MRCP; Patrick M. Heck, MB, MRCP; Stephen P. Hoole, MB, MRCP; David P. Dutka, DM, FRCP

Background—Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted postprandially that promotes myocardial glucose uptake. The active amide GLP-1 (7-36) is degraded by the enzyme DPP-4, and drugs that inhibit this enzyme (such as sitagliptin) have been introduced to treat type 2 diabetes. We assessed the hypothesis that increasing the plasma concentration of GLP-1 by DPP-4 inhibition would protect the heart from ischemic left ventricular (LV) dysfunction during dobutamine stress echocardiography in patients with coronary artery disease.

Methods and Results—Fourteen patients with coronary artery disease and preserved LV function awaiting revascularization were studied. After either a single dose of 100 mg sitagliptin or placebo, 75 g of glucose was given orally to promote GLP-1 secretion and dobutamine stress echocardiography was conducted with tissue Doppler imaging at rest, peak stress, and 30 minutes. After sitagliptin, plasma GLP-1 (7-36) was increased at peak stress (16.5±10.7 versus 9.7±8.7 pg/mL; \(P=0.003\)) and in recovery (12.4±5.5 versus 9.0±5.5 pg/mL; \(P=0.01\)), and the LV response to stress was enhanced (ejection fraction, 72.6±7.2 versus 63.9±7.9%, \(P=0.0001\); mitral annular systolic velocity, 12.54±3.18 versus 11.49±2.52 cm/s; \(P=0.0006\)). DPP-4 inhibition also improved LV regional function in the 12 paired nonapical segments assessed by peak systolic tissue Doppler (velocity, 10.56±4.49 versus 9.81±4.26 cm/s; \(P=0.002\); strain, −15.9±6.3 versus −14.6±6.6%, \(P=0.01\); strain rate, −2.04±1.04 versus −1.75±0.98 s\(^{-1}\), \(P=0.0003\)). This was predominantly due to a cardioprotective effect on ischemic segments (velocity in ischemic segments, 9.77±4.18 versus 8.74±3.87, \(P=0.007\); velocity in nonischemic segments, 11.51±4.70 versus 11.14±4.38, \(P=0.14\)). In recovery, sitagliptin attenuated the postischemic stunning seen after the control study.

Conclusions—The augmentation of GLP-1 (7-36) by inhibition of DPP-4 improves global and regional LV performance in response to stress and mitigates postischemic stunning in humans with coronary artery disease.

Clinical Trial Registration—URL: http://www.isrctn.org. Unique identifier: ISRCTN78649100.

(Circ Cardiovasc Imaging. 2010;3:195-201.)

Key Words: coronary disease ■ ischemia ■ glucagon-like peptide ■ stress echocardiography ■ ventricular function

Glucagon-like peptide 1 (GLP-1) is an incretin hormone secreted mainly by the enteroendocrine cells of the intestine in response to nutrients. It facilitates glucose-induced insulin release and suppresses glucagon. The effects are dependent on the prevailing glucose concentration minimizing the risk of hypoglycemia. The active amide GLP-1 (7-36) has a half-life of only 1 to 2 minutes and is rapidly degraded by the enzyme DPP-4 to a truncated metabolite GLP-1 (9-36). This has fostered the development of specific inhibitors that prevent the rapid postprandial fall in the plasma concentration of GLP-1. DPP-4 inhibition is well tolerated and is now approved as a therapy for type 2 diabetes in the United Kingdom and United States.
LV dysfunction after primary angioplasty for acute myocardial infarction significantly improved global and regional LV function.7

We proposed that the increase in the plasma concentration of GLP-1 after sitagliptin would protect the heart against postischemic LV dysfunction and improve the myocardial response to dobutamine stress in patients with significant coronary artery disease.

Methods

Study Population

Patients with coronary artery disease and normal resting LV function who were awaiting elective revascularization were invited to participate. All patients had undergone recent coronary angiography before enrollment in the study. Exclusion criteria included abnormal LV regional wall motion at rest, a history of myocardial infarction within the previous 3 months, conduction abnormalities, valvular heart disease, and diabetes receiving insulin. The study was approved by the local ethics committee, and the study protocol complied with the guidelines set out in the Declaration of Helsinki. All participants gave written informed consent.

Dobutamine Stress Echocardiography

All subjects underwent dobutamine stress echocardiography (DSE) on 2 occasions approximately 1 week apart (Figure 1). They were asked to omit β-blockers for 48 hours before each scan, and oral hypoglycemic agents were omitted on the morning of the study. After an overnight fast, patients received 75 g oral glucose before each DSE to stimulate GLP-1 secretion. As the peak effect of GLP-1 after sitagliptin (Januvia, MSD) occurs at 2 hours after dose,8 patients were given a single dose of 100 mg sitagliptin orally 2 hours before the oral glucose for one of the scans and the other study acted as a control. The order of the 2 scans was randomized.

A standard clinical protocol for DSE was used. Dobutamine was administered using an infusion pump in incremental doses (10 μg/kg/min initially, then increased at 3-minute intervals to 20, 30, and 40 μg/kg/min if tolerated) and up to 2 mg of atropine if necessary to achieve the target heart rate. Criteria for stopping the test were achievement of target heart rate of (220−age)×0.85 bpm, ischemic ECG changes (>2 mm ST depression), angina, systolic blood pressure increase to >240 mm Hg or decrease to <100 mm Hg, and severe arrhythmias. Two-dimensional echocardiography (Vivid 7, GE Medical Systems) was performed with the patient in the left recumbent position, and images were recorded at rest, during each stage of dobutamine stress, and in recovery. Three cardiac cycles of the apical 4-, 3-, and 2-chamber views were captured with tissue Doppler imaging. The image sector width was kept as narrow as possible to maximize the frame rate. All recordings were made in gently held midexpiration to minimize beat-to-beat variability, and the data were stored for subsequent off-line analysis (EchoPac, GE Medical Systems).

Blood samples were taken to measure glucose, insulin, free fatty acids (FFA), and GLP-1 (7-36) at several time points before and after the DSE. The syringes for the collection of GLP-1 samples were pre-prepared with DPP-4 inhibitor (Millipore) to prevent GLP-1 degradation. Plasma GLP-1 levels were measured using a commercially available assay (Meso Scale Discovery).

Echocardiographic Analysis

The scans were analyzed off-line by a reviewer who was blinded to the treatment strategy (control versus sitagliptin). Regional wall LV motion was assessed using a 12-segment model. This comprises the base and mid level of 6 regional walls (septal, lateral, anterior, inferior, anteroseptal, and posterior) obtained from the 3 apical views. LV volumes and ejection fraction was calculated using the Simpson biplane method according to the guidelines of the American Society of Echocardiography. Global LV function was also assessed by mitral annular systolic velocity averaged from 6 sites.9 Peak systolic tissue velocity (Vs) and strain and strain rates were calculated from tissue Doppler velocity data averaged over 3 consecutive beats. The timings of aortic valve opening and closure were made from the tissue Doppler waveform.10 The MYDISE study demonstrated that coronary artery disease could be diagnosed accurately and objectively from off-line measurements of myocardial velocities recorded by tissue Doppler echocardiography during dobutamine stress.11 In particular, strain rate imaging has been shown to provide objective evidence of inducible ischemia12 and may be a superior parameter to peak tissue velocity.13

A diameter stenosis of >50% on coronary angiography was considered hemodynamically significant. Myocardial segments were assigned to the perfusion territories of stenosed vessels, considering the left anterior descending coronary artery to supply the mid septal, anterior, and anteroseptal segments, the circumflex artery to supply the basal septum (if dominant) and inferior segments. The posterior wall was assigned to the circumflex or right coronary artery, depending on the relative size of the vessels.

Statistics

The number of subjects had been calculated on the basis of previous work in patients with coronary artery disease in whom ejection fraction increased from 57±5.6% to 66.0±6.7% when dobutamine stress was performed during a hyperinsulinemic, euglycemic clamp. To detect a change in global LV ejection fraction of 5% after dobutamine stress (standardized effect size of 1), 17 patients were required (paired t test, α=0.05, β=0.20). Interim analysis was conducted after the first 10 participants to make adjustments to the
sample size if required and therefore avoid patients undergoing dobutamine stress unnecessarily. Comparisons were made between the sitagliptin and control DSE scans. All data are expressed as mean±SD. Each patient acted as their own control. For continuous data, the paired Student t test was used to compare means between 2 groups. A probability value of <0.05 was considered as statistically significant. Intraobserver and interobserver variabilities were expressed as the SD of the difference between 2 paired measurements and as a percentage of variability (SD divided by the average value of the variable).

Results

Study Population

Interim analysis of the first 10 patients had shown significant results and therefore the number of subjects required was reduced. Fourteen patients were randomly assigned (Figure 2) and completed the study (Table 1). They were awaiting revascularization (percutaneous coronary intervention or coronary artery bypass grafting) for single-vessel (n=10, 71%), double-vessel (n=2, 14%), and triple-vessel disease (n=2, 14%). The left anterior descending artery was involved in 71%, the left circumflex artery in 21%, and the right coronary artery in 50% of patients.

DSE

The 2 DSEs were conducted 7.6±4.4 days apart. There was no difference in the rate-pressure products at peak stress (Table 2) between the sitagliptin and control scans.

Biochemistry

Before oral glucose, sitagliptin had no effect on any measured parameter (Figure 3). The DSE images at rest were obtained taken in the fasted state before the oral glucose load. At baseline, there were no differences in the plasma concentration of GLP-1 (7-36) (P=0.19), plasma glucose (P=0.20), insulin (P=0.44), or FFA (P=0.59).

At peak dobutamine stress after sitagliptin, the plasma glucose concentration was lower (mean difference to control, 1.1±1.1 mmol/L, P=0.003) and the plasma GLP-1 (7-36) concentration greater than control (mean difference, 6.8±7.3 pg/mL, P=0.004). The plasma level of insulin increases during DSE due to the effect of dobutamine on the pancreas.14

However, at peak stress, there was a trend for the rise in insulin concentration to be less after sitagliptin (P=0.14), although there was no change in the plasma level of FFA (P=0.80) (Figure 3).

After dobutamine, the GLP-1 (7-36) concentration remained higher after sitagliptin (P=0.01) and the plasma glucose concentration was lower (P=0.01), although there were no differences in the plasma concentration of insulin (P=0.23) or FFA (P=0.78).

Global LV Function

At rest, LV function was similar before both studies (ejection fraction, 60.1±6.3% [sitagliptin] versus 60.1±5.9% [control], P=0.83). At peak stress, there was a greater increase in myocardial performance after sitagliptin (Figure 4; 72.6±7.2% [sitagliptin] versus 63.9±7.9% [control], P=0.0001), and this improved performance was maintained at 30 minutes (64.6±6.2% [sitagliptin] versus 55.5±7.7% [control], P<0.0001). During the control scan there was evidence of postischemic LV dysfunction (stunning) compared with baseline (55.5±7.7 versus 60.1±5.9%; P=0.005), whereas after sitagliptin, LV function was maintained (Figure 4).

<table>
<thead>
<tr>
<th>Table 1. Demographics and Clinical Data of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
</tr>
<tr>
<td>Age, y</td>
</tr>
<tr>
<td>Male sex</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>Active/ex-smoker</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Previous MI</td>
</tr>
<tr>
<td>Biochemistry</td>
</tr>
<tr>
<td>Total cholesterol, mmol/L</td>
</tr>
<tr>
<td>HOMA IR</td>
</tr>
<tr>
<td>HbA1c, %</td>
</tr>
<tr>
<td>Anti-anginal medications</td>
</tr>
<tr>
<td>β-blockers</td>
</tr>
<tr>
<td>Calcium channel antagonist</td>
</tr>
<tr>
<td>Long-acting nitrate</td>
</tr>
<tr>
<td>Nicorandil</td>
</tr>
<tr>
<td>ivabradine</td>
</tr>
</tbody>
</table>

Data are presented as mean±SD or n (%). BMI indicates body mass index; HOMA IR, homeostasis model assessment of insulin resistance; HbA1c, glycosylated hemoglobin.

Table 2. Hemodynamic Data During DSE Scans

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate, bpm</td>
<td>128±9.3</td>
<td>127±9.7</td>
<td>0.59</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>155±27</td>
<td>153±24</td>
<td>0.69</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>67±13</td>
<td>69±9.0</td>
<td>0.33</td>
</tr>
<tr>
<td>Rate-pressure product, mm Hg · bpm</td>
<td>19 855±3761</td>
<td>19 448±3229</td>
<td>0.54</td>
</tr>
</tbody>
</table>
Global LV function assessed by mitral annular systolic velocity confirmed these findings. There was no difference in LV function at rest (6.10 ± 1.00 [sitagliptin] versus 5.86 ± 1.04 [control] cm/s; P = 0.2), but LV performance was enhanced after DPP-4 inhibition at peak stress (12.54 ± 3.18 [sitagliptin] versus 11.49 ± 2.52 [control] cm/s; P = 0.0006) and at 30 minutes after cessation of dobutamine (5.99 ± 1.54 [sitagliptin] versus 5.62 ± 1.04 [control] cm/s; P = 0.004). There was again evidence of postischemic LV dysfunction (stunning) in the control scan compared with baseline (5.62 ± 1.04 versus 5.86 ± 1.04 cm/s; P = 0.04), but this was not seen after sitagliptin.

Regional Wall LV Function
For the 12 paired nonapical segments, there was no difference at rest between the sitagliptin and control DSEs. However, at peak stress, sitagliptin increased regional wall function assessed by velocity and strain and strain rates (Table 3). This improvement in function after sitagliptin remained present at 30 minutes into the recovery period.

Ischemic Versus Nonischemic Segments
Ischemic segments were defined as those subtended by a coronary artery with a stenosis of >50% on coronary angiography. Sitagliptin had a greater beneficial effect on ischemic than on nonischemic segments (Table 4).

Reproducibility
Reproducibility was assessed in 8 randomly selected patients for the images recorded at rest, peak stress, and in recovery. The intraobserver and interobserver variabilities for the tissue Doppler imaging parameters were, respectively, 0.37 cm/s (7%) and 0.41 cm/s (8%) for tissue velocity, 1.8% (11%) and 2.1% (13%) for strain, and 0.12 s⁻¹ (13%) and 0.14 s⁻¹ (15%) for strain rate. For LV ejection fraction, the intraobserver variability was 3.6% (6%) and the interobserver variability was 4% (7%).

Discussion
This study demonstrates that in patients with coronary artery disease, metabolic manipulation using DPP4 inhibition to prevent the degradation of GLP-1 can protect the heart from ischemic LV dysfunction during dobutamine stress and mitigate postischemic stunning. Global and regional wall LV performance was greater after sitagliptin at peak stress and at 30 minutes into recovery compared with control.

We used an oral glucose load to produce a rise in the plasma level of GLP-1. The peak surge of GLP-1 was greater and persisted for longer after sitagliptin than control. As
Cardioprotection by GLP-1

In rat models, GLP-1 (7-36) has been shown to have a direct effect on the heart to increase myocardial glucose uptake, enhance recovery of cardiac function after ischemia, and limit myocardial infarction. Reduction in infarct size has also been demonstrated in a porcine model using exenatide, which is a GLP-1 receptor agonist. There have been relatively few studies looking at the effect of GLP-1 on the heart in humans. Intravenous infusion of GLP-1 has been shown to reduce infarct size in patients undergoing primary angioplasty for acute myocardial infarction and to reduce inotrope requirements during coronary artery bypass grafting. Chronic subcutaneous infusion of GLP-1 over 5 weeks improved LV function, functional status, and quality of life in patients with severe heart failure.

GLP-1 (7-36) is rapidly degraded by DPP-4 to its metabolite, GLP-1 (9-36). The activity of this metabolite is controversial. In humans, it has no effect on insulin secretion from the pancreas, and its glucose lowering potential is small compared with GLP-1 (7-36). The GLP-1 receptor in the human heart has the same amino acid sequence as the receptor in the pancreas. However, in a canine model, infusion of GLP-1 (9-36) was shown to reduce infarct size in patients undergoing primary angioplasty for acute myocardial infarction and to reduce inotrope requirements during coronary artery bypass grafting.

The divergent effects suggest that there may be a particularly useful strategy for these patients.

Table 3. Regional Wall LV Function

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>t</sub>, cm/s</td>
<td>4.58±1.62</td>
<td>4.55±1.71</td>
<td>0.63</td>
<td>9.81±4.26</td>
<td>10.56±4.49</td>
<td>0.002</td>
</tr>
<tr>
<td>Strain, %</td>
<td>−15.8±6.6</td>
<td>−16.0±6.8</td>
<td>0.62</td>
<td>−14.6±6.6</td>
<td>−15.9±6.3</td>
<td>0.01</td>
</tr>
<tr>
<td>Strain rate, s<sup>−1</sup></td>
<td>−1.07±0.46</td>
<td>−1.09±0.45</td>
<td>0.71</td>
<td>−1.75±0.98</td>
<td>−2.04±1.04</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Table 4. Ischemic Versus Nonischemic Segments

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>t</sub>, cm/s</td>
<td>8.74±3.87</td>
<td>9.77±4.18</td>
<td>0.007</td>
<td>4.10±1.72</td>
<td>4.47±1.94</td>
<td>0.002</td>
</tr>
<tr>
<td>Strain, %</td>
<td>−14.9±6.5</td>
<td>−16.1±6.4</td>
<td>0.16</td>
<td>−13.1±7.7</td>
<td>−14.2±6.3</td>
<td>0.04</td>
</tr>
<tr>
<td>Strain rate, s<sup>−1</sup></td>
<td>−1.65±0.87</td>
<td>−2.02±1.11</td>
<td>0.0004</td>
<td>−0.90±0.43</td>
<td>−1.06±0.45</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
<th>Control</th>
<th>Sitagliptin</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>t</sub>, cm/s</td>
<td>11.14±4.38</td>
<td>11.51±4.70</td>
<td>0.14</td>
<td>4.72±1.52</td>
<td>4.92±1.95</td>
<td>0.26</td>
</tr>
<tr>
<td>Strain, %</td>
<td>−15.4±5.8</td>
<td>−16.1±6.4</td>
<td>0.18</td>
<td>−14.0±6.2</td>
<td>−15.0±7.4</td>
<td>0.29</td>
</tr>
<tr>
<td>Strain rate, s<sup>−1</sup></td>
<td>−1.86±1.07</td>
<td>−2.07±0.98</td>
<td>0.12</td>
<td>−0.97±0.44</td>
<td>−1.11±0.57</td>
<td>0.02</td>
</tr>
</tbody>
</table>
be more than 1 type of GLP-1 receptor in the heart. In our study, DPP-4 inhibition produces a beneficial effect to protect against ischemic LV dysfunction. This suggests that GLP-1 (7-36) has a direct effect on the heart rather than acting via its metabolite GLP-1 (9-36).

Limitations
In this study, we have assessed the cardioprotective effect of GLP-1 on echocardiographic end points during dobutamine stress. The study was not powered to examine the effect on any clinical end points. All attempts were made to conduct the 2 DSE scans for each patient in identical fashion and obtain the peak stress images at the same degree of dobutamine stress. However, there may be some variation in patients’ response to dobutamine on the 2 separate study days. The patients in this study had normal LV ejection fraction and stable angina, but further studies would be required to assess whether the effect also occurs in those with suppressed LV ejection fraction or in other clinical scenarios such as acute coronary syndromes.

Clinical Implications
The pharmacological properties of GLP-1 make it an attractive cardioprotective agent. It is well tolerated with minimal risk of hypoglycemia. The beneficial effects have been observed in both diabetics and also in nondiabetics such as in our study. We have demonstrated an acute cardioprotective effect after DPP-4 inhibition by a single dose of sitagliptin. Further studies are required to assess whether there is a long-term benefit from chronic DPP-4 inhibition, which would be particularly useful in patients who have type 2 diabetes and coronary artery disease.

Conclusion
The inhibition of DPP-4 augmented plasma levels of GLP-1 (7-36), which improved global and regional wall LV function during dobutamine stress and mitigated postischemic stunning in the recovery period. This was predominantly driven by a cardioprotective effect on ischemic segments and was independent of insulin.

Acknowledgments
We thank the patients for their participation and the staff at the Welcome Trust Clinical Research Facility, Addenbrooke’s Hospital, for their assistance throughout the study.

Sources of Funding
This study was funded in part by the Cambridge National Institute for Health Research Comprehensive Biomedical Research Centre.

Disclosures
None.

References

CLINICAL PERSPECTIVE

This study has demonstrated the potential of glucagon-like peptide-1 (GLP-1) to provide cardiac protection against ischemia using the DPP-4 inhibitor sitagliptin. These agents are licensed for the treatment of type 2 diabetes as second-line therapy following trials that have shown reduction in HbA1C. Patients who have type 2 diabetes and coronary artery disease are difficult to treat and have a worse outcome from revascularization compared with nondiabetics. Improvement in medical treatment strategies for these patients could have a large clinical impact. We have shown that DPP-4 inhibitors can produce an acute beneficial effect to protect against ischemic left ventricular dysfunction. Further studies are required to examine whether GLP-1 agents such as DPP-4 inhibitors or GLP-1 receptor agonists could have chronic beneficial effects on the heart for the diabetic with coronary disease. The potential cardiac use of GLP-1 may also be broader than the treatment of stable coronary artery disease. Its pharmacological properties as a cardioprotective agent are attractive. It is well tolerated with minimal side effects and there is very low risk of hypoglycemia which obviates the need for concomitant glucose infusion. Further work is needed to assess its potential benefits in other clinical settings such as in patients with heart failure or in acute coronary syndromes.
DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients With Coronary Artery Disease
Philip A. Read, Fakhar Z. Khan, Patrick M. Heck, Stephen P. Hoole and David P. Dutka

Circ Cardiovasc Imaging. 2010;3:195-201; originally published online January 14, 2010;
doi: 10.1161/CIRCIMAGING.109.899377

Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue,
Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/3/2/195

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Cardiovascular Imaging_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Cardiovascular Imaging_ is online at:
http://circimaging.ahajournals.org//subscriptions/