Healing of acute myocardial infarction (MI) and subsequent increase in left ventricular (LV) cavity size or LV remodeling is a complex process. LV remodeling depends largely on infarct size and transmurality which in turn is determined by the status of the epicardial infarct artery and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature. Within a larger, near-transmural or transmural infarction, there is myocyte loss, in part because of apoptosis, and cellular slippage that leads to reduced tensile strength within the infarct zone and subsequent infarct expansion. Infarct expansion and wall thinning in the infarct zone then leads to regional cavity dilatation and increased wall stress throughout the LV. Elevated wall stress in turn activates the renin-angiotensin system and other autocrine-paracrine systems and cellular hypertrophy ensues. Cellular hypertrophy occurs primarily in noninfarcted regions adjacent to the infarcted segment and is eccentric due to the laying down of sarcomeres and the microvasculature.

Until very recently, studies of the structural events that occur during LV remodeling have required painstaking histopathology and have been performed primarily in animals. With the advent of advanced cardiac imaging techniques, similar observations can now be made in vivo. Diffusion tensor cardiac magnetic resonance imaging (DT-CMR) was developed more than a decade ago, but was initially applied post-MI medical therapy during this period. Nine of the patients had received percutaneous coronary intervention before the initial CMR, whereas an additional 7 patients underwent percutaneous coronary intervention in the interval between imaging sessions. It would have been useful to know if the changes that occurred between the 2 imaging sessions were different in the 7 revascularized patients compared with the rest of the population as it may be difficult to tease out natural history from effects of revascularization. Presumably the patients were on state-of-the-art post-MI medical therapy during this period. Nine of the infarcts were in the LAD territory, 2 in the left circumflex, and 6 in the right coronary artery territory. Examining differences in the anterior infarct group would have been of interest as anterior infarcts are known to be prone to greater adverse LV remodeling. The relatively small size of the patient group may have precluded this type of substudy.

IImaging was performed entirely in the midventricle with 3 slices representing this territory. On the basis of standard late gadolinium-enhanced CMR, the myocardium was divided into 2 territories; infarct-adjacent and remote. Infarct-adjacent segments were defined as those that contained infarcted tissue of any transmurality, and adjacent noninfarcted tissue was thus defined as midwall and subepicardial border zones. Unfortunately, no data are presented regarding extent of transmurality of infarction in these patients. This could...
certainly impact the findings because subsequent remodeling is distinctly different between subendocardial and transmural infarcts.

During the 6 months between DT-CMR studies, the infarct-adjacent region demonstrated wall thinning while the remote zone demonstrated hypertrophy and increased wall thickening relative to the infarcted segment. During infarct healing, the infarct-adjacent region demonstrated a decrease in mean diffusivity, toward normal, likely due to resolution of edema and further organization of scar. Similar findings were noted in remote. In addition, myofibrillar disarray as evidenced by fractional anisotropy tended to improve in the infarct zone and did improve in remote. The fiber angle became more right-handed helical with time in the infarct-adjacent region consistent with replacement with epicardial fibers whereas the remote region became more left-handed helical, likely due to relative hypertrophy of fibers with subendocardial orientation. Correlations were noted between mean diffusivity in the infarct-adjacent region and improved wall thickening. Similar correlations were noted in remote.

Despite all of these microstructural improvements, global ejection fraction did not improve over time in this patient population. This is a result of a relative decline in wall thickening in the infarct segment while remote regions improved. Wu et al did not include in their manuscript the changes in end-diastolic or -systolic volumes that may have occurred over time in this population of patients. Ejection fraction may not change, but if end-diastolic and -systolic volumes increase proportionally, this portends an adverse prognosis in the post-MI population.16

This study does not explain the wall thinning in the infarct zone as diffusivity and anisotropy improve. The wall thinning must still be in large part due to loss of myocytes and cell slippage. In addition, imaging doesn’t yet offer the kind of spatial resolution that can differentiate eccentric from concentric cellular hypertrophy. We must infer these changes from relationships between noninfarcted segment lengths, wall thickness, and cavity size. Despite these limitations, this study makes important contributions to our understanding of the process of scar healing and LV remodeling in vivo. Studies of this kind have previously not been possible in the living human heart. Wu et al should be congratulated for completing such technically challenging imaging as well as data analysis in this patient population. Only with similar studies in larger patient groups will investigators be able to tease out differences in infarct healing and LV remodeling based on infarct location, transmurality, and the presence or absence of microvascular obstruction in acute MI. As cardiovascular imagers become more proficient in such advanced techniques, the need for pathologists performing microstructural studies in small animals will dissipate.

Sources of Funding
Dr. Kramer is supported in part by HL075792 (National Heart Lung and Blood Institute, NIH) and 0855409E (American Heart Association).

Disclosures
Dr. Kramer receives research equipment support and is a consultant for Siemens Medical Solutions.

References

Key Words: magnetic resonance imaging • myocardial infarction • remodeling
Insights into Myocardial Microstructure During Infarct Healing and Remodeling:
Pathologists Need Not Apply
Christopher M. Kramer

doi: 10.1161/CIRCIMAGING.108.841619
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue,
Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circimaging.ahajournals.org/content/2/1/4

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance
Center, not the Editorial Office. Once the online version of the published article for which permission is being
requested is located, click Request Permissions in the middle column of the Web page under Services. Further
information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/