Visual and Quantitative Assessment of Coronary Stenoses at Angiography Versus Fractional Flow Reserve

The Impact of Risk Factors

Julien Adjedj, MD; Panagiotis Xaplanteris, MD, PhD; Gabor Toth, MD; Angela Ferrara, MD; Mariano Pellicano, MD; Giovanni Ciccarelli, MD; Vincent Floré, MD, PhD; Emanuele Barbato, MD, PhD; Bernard De Bruyne, MD, PhD

Background—The correlation between angiographic assessment of coronary stenoses and fractional flow reserve (FFR) is weak. Whether and how risk factors impact the diagnostic accuracy of angiography is unknown. We sought to evaluate the diagnostic accuracy of angiography by visual estimate and by quantitative coronary angiography when compared with FFR and evaluate the influence of risk factors (RF) on this accuracy.

Methods and Results—In 1382 coronary stenoses (1104 patients), percent diameter stenosis by visual estimation (DS\textsubscript{VE}) and by quantitative coronary angiography (DS\textsubscript{QCA}) was compared with FFR. Patients were divided into 4 subgroups, according to the presence of RFs, and the relationship between DS\textsubscript{VE}, DS\textsubscript{QCA}, and FFR was analyzed. Overall, DS\textsubscript{VE} was significantly higher than DS\textsubscript{QCA} ($P<0.0001$); nonetheless, when examined by strata of DS, DS\textsubscript{VE} was significantly smaller than DS\textsubscript{QCA} in mild stenoses, although the reverse held true for severe stenoses. Compared with FFR, a large scatter was observed for both DS\textsubscript{VE} and DS\textsubscript{QCA}. When using a dichotomous FFR value of 0.80, C statistic was significantly higher for DS\textsubscript{VE} than for DS\textsubscript{QCA} (0.712 versus 0.640, respectively; $P<0.001$). C statistics for DS\textsubscript{VE} decreased progressively as RFs accumulated (0.776 for \leq1 RF, 0.750 for 2 RFs, 0.713 for 3 RFs and 0.627 for \geq4 RFs; $P=0.0053$). In addition, in diabetics, the relationship between FFR and angiographic indices was particularly weak (C statistics: 0.524 for DS\textsubscript{VE} and 0.511 for DS\textsubscript{QCA}).

Conclusions—Overall, DS\textsubscript{VE} has a better diagnostic accuracy than DS\textsubscript{QCA} to predict the functional significance of coronary stenosis. The predictive accuracy of angiography is moderate in patients with \leq1 RFs, but weakens as RFs accumulate, especially in diabetics. (Circ Cardiovasc Imaging. 2017;10:e006243. DOI: 10.1161/CIRCIMAGING.117.006243.)

Key Words: coronary angiography ■ coronary stenosis ■ diabetes mellitus ■ hyperemia ■ risk factors

See Editorial by Shaw and Min
See Clinical Perspective

Accordingly, the goal of this study was to compare, side-by-side, the diagnostic performance of angiography by VE and QCA to FFR and to investigate the effect of lesion location and risk factors on these diagnostic performances.

Methods

Study Population

In 1104 patients with stable coronary artery disease (patients with stable angina, or the nonculprit vessels of patient with an acute coronary syndrome), the values of percent diameter stenosis by VE (DS\textsubscript{VE}), of percent diameter stenosis by QCA (DS\textsubscript{QCA}), and of FFR were available in at least 1 epicardial artery with an isolated stenosis at angiography. We excluded patients with in-stent restenosis and coronary artery bypass graft. Sequential stenoses in the same vessel were excluded. These data were systematically collected and stored prospectively in the local database together with the clinical characteristics and risk factors to constitute the basis of the present analysis. Patients were divided into 4 subgroups, according to the presence of risk factors (none or 1, 2, 3, 4, and more). All subjects gave written informed consent before undergoing coronary angiogram as part of the local routine and in agreement with the local institutional review board.
Coronary Angiogram

Coronary angiography was performed by a standard percutaneous femoral or radial approach with a 6F or 7F guiding catheter. After administration of 200 to 300 μg intracoronary isosorbide dinitrate, the angiogram was repeated in the projection allowing the best possible visualization of the stenosis. DSQCA was assessed by the interventional cardiologist. QCA was performed based on the technology, described previously,15,16 using one of the following softwares: Siemens Healthcare Axiom Artis VB35D110803 (Siemens Medical Solutions, Siemens AG, Forchheim, Germany); Siemens Healthcare ACOM.PC 5.01 System (Siemens Medical Solutions, Siemens AG); and General Electric AW Volume Share 6E (General Electric Inc, Fairfield, OH). An experienced technician, unaware of the FFR results, obtained all measurements. Data were introduced on a different page of the database. The projection was chosen to avoid, as far as possible, foreshortening or overlap of other arterial segments. The contrast-filled catheter was used for calibration. From an end-diastolic still frame, reference diameter (mm), minimum luminal diameter (mm), percent diameter stenosis (DS, %), and lesions length were calculated. The coronary arterial segments were defined according to the American Heart Association and modified for the ARTS (Arterial Revascularization Therapies Studies) I and II.17

Pressure Measurements

FFR was measured as previously described.18 A pressure monitoring guidewire (St Jude Medical Inc, St Paul, MN) was advanced distal to the coronary artery stenosis. Hyperemia was obtained after administration of intravenous (continuous infusion of 140 μg kg\(^{-1}\) min\(^{-1}\)) or intracoronary (bolus of 100–200 μg) 19 of adenosine. FFR was defined as the ratio of the simultaneously recorded mean arterial pressure at the tip of the guiding catheter during stable, steady-state hyperemia. An FFR value ≤0.80 was considered as hemodynamically significant, and FFR values >0.80 was considered as nonhemodynamically significant.20 The clinical relevance of this cutoff value is based on clinical outcome data.21–31

Statistical Analysis

Normal distribution was tested with the Shapiro–Wilk test. Summary descriptive statistics are reported as mean and SD, or median (interquartile range), or counts (%) as appropriate. The Kruskal–Wallis test with Dunn correction for multiple comparisons was used to compare continuous variables among the 4 risk factors subgroups, and the Mann–Whitney test was used to compare diabetic versus nondiabetic. Categorical variables were compared with the Pearson \(\chi^2\) test. Correlation among variables was determined by calculating Spearman \(\rho\) correlation coefficient. Receiver operator characteristic (ROC) analysis was used to assess the diagnostic capability of the angiographic indices to detect hemodynamically significant stenoses (FFR with a cutoff of 0.80 as the gold standard). The areas under the ROC curves (C statistics) were compared as described by Hanley and McNeil.32 All analyses were performed with Prism GraphPad 5.0 (GraphPad Software Inc, CA) and SPSS 21.0 (IBM Inc, NY).

VE and QCA Versus FFR

During the study period, we included and analyzed 1382 coronary stenoses in 1104 patients. The median FFR was 0.81 (25th, 75th percentile: 0.73, 0.88), the median DSQCA was 50% (25th, 75th percentile: 39%, 60%), and the mean DSVE was 50% (25th, 75th percentile: 40%, 65%). A significant but weak correlation was found between DSVE and FFR (\(\rho=-0.418\); \(P<0.001\)) and between DSQCA and FFR (\(\rho=-0.282\); \(P<0.001\)). DSVE tended to be larger than DSQCA <60% DS, whereas the opposite was true >70% DS (Figure 1). The C statistic of the DSQCA ROC curve was significantly lower than that of DSVE (0.640 versus 0.712, respectively; \(P<0.001\); Figure 2).

Impact of Lesion Location

The location of the analyzed coronary lesions is presented in Table 1. The C statistics of the DSVE ROC curves for lesions located at the left main (LM), left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA) were 0.824, 0.699, 0.780, and 0.738, respectively. In pairwise comparisons, a statistically significant difference was noted between the LM-LAD (\(P<0.001\)) and the LAD-LCx (\(P=0.02\)) DSVE ROC curves.

Similarly, for DSQCA, the C statistics of the ROC curves for lesions at the LM, LAD, LCx, and RCA were 0.511,

![Figure 1](http://circimaging.ahajournals.org/)

Figure 1. Individual values of the diameter stenosis by visual estimate (DSVE) and diameter stenosis by quantitative coronary angiography (DSQCA) difference plotted per strata of DS. The difference of DSVE and DSQCA (y axis) is plotted against their average value (x axis). DSVE tended to be larger than DSQCA <60% diameter stenosis, whereas the opposite was true >70% diameter stenosis. \(P\) values for between-groups comparisons with the Kruskal–Wallis test with Dunn correction. Error bars present the median (25th–75th value) of the DSVE %–DSQCA % difference for each strata.
0.636, 0.693, and 0.692, respectively. In pairwise comparisons, a statistically significant difference was noted between the LM-LCx ($P=0.02$) and the LM-RCA ($P=0.02$) DS QCA ROC curves.

In subgroup analysis according to lesion location, the C statistics of the DS VE ROC curves for lesions located at the proximal, mid, and distal part of the vessel were, respectively, 0.740, 0.699, and 0.704. The respective C statistics of the DS QCA curves were 0.629, 0.626, and 0.658. Pairwise comparisons did not reveal significant differences of C statistics according to lesion location for the DS VE and DS QCA ROC curves.

Impact of Risk Factors

In our study population, 124 (11%) patients had no or only 1 risk factor, 338 patients (31%) had 2, 398 patients (36%) had 3, and 244 patients (22%) had ≥ 4 risk factors (Table 1). Angiographic indices (DS, reference diameter, and minimum lumen diameter) did not differ across subgroups (Table 2). The ROC curve C statistic for DS VE diminished significantly with the accumulation of risk factors (0.776 for 0–1 risk factor, 0.750 for 2 risk factors, 0.713 for 3 risk factors, and 0.627 for ≥ 4 risk factors, respectively; $P=0.005$; Figure 3).

Impact of Diabetes Mellitus

In our study population, 97 (9%) patients had diabetes mellitus, and 1007 (91%) did not have diabetes mellitus. Both groups were similar in terms of baseline and angiographic characteristics, with the exception of higher prevalence of dyslipidemia, family history of coronary artery disease, and higher body mass index in the diabetic group (Table 3). FFR was significantly higher in the diabetic group compared with the nondiabetic group (0.83 [0.76, 0.90] versus 0.81 [0.73, 0.88]; $P=0.013$). In ROC analyses, the DS VE curve for the diabetic group had a lower C statistic compared with the nondiabetic group (0.524 versus 0.729; $P<0.001$; Figure 4).

Discussion

Even though coronary angiography will remain central to the diagnosis and treatment of coronary artery disease, the relation between the angiographic severity, typically expressed in percent DS, remains elusive. In the present analysis, we compared side-by-side VE and QCA to FFR and studied the effect of risk factors on these relationships.

The main findings of this study can be summarized as follows: (1) when compared with QCA, VE underestimates mild stenoses and overestimates tight stenoses; (2) VE predicts...
better the FFR value than does QCA; and (3) the diagnostic accuracy of angiography in predicting FFR decreases with accumulating risk factors, particularly so in diabetic patients.

Comparison of VE and QCA With DS Severity
Our study showed that VE underestimates mild stenoses and overestimates tight stenosis compared with QCA. Our results were similar and confirm in a larger population previous studies describing the difference observed between VE and QCA.34–36

Correlation of VE Versus QCA With Physiology
Several studies have indicated that the reproducibility of QCA was significantly better than that of VE.37 Both inter- and intraobserver variability are reduced by QCA. This justifies the adoption of QCA in trial setting. Yet, the present data indicate that the diagnostic accuracy of VE to predict a positive or negative FFR value was significantly higher than that of QCA and actually justifies the lack of adoption of QCA for clinical decision-making. Our study showed better diagnosis accuracy expressed as AUCs in LM assessed with VE compared with FFR, whereas QCA evaluation for the same stenoses is markedly low and significantly lower than AUCs of QCA compared with FFR in LCx (P=0.02) and in RCA (P=0.02). Of note, AUCs of VE compared with FFR in LAD lesions was lower compared with LCx (P=0.02) and to LM (P<0.001). No difference in terms of AUCs of VE or QCA compared with FFR was observed according to lesion location between proximal, mid, and distal coronary segments. The reasons for this apparent paradox remain speculative. QCA is largely operator independent. In contrast, VE—often called eyeballing—is largely operator dependent and subjective. It is likely that when evaluating the percent DS the operator unconsciously incorporates many other factors not directly related to the dimensions of the lumen but known to play a role on transstenotic hemodynamics: myocardial mass, segmental wall motion, filling pressures, prognostic significance of the stenotic segment, general morphology of the coronary vasculature, and bifurcation. These factors influence the FFR values but are not accounted for by QCA. In addition, operator’s knowledge of results of noninvasive
CAD Mismatch Between Angiography and FFR

stress test may contribute to the subjective evaluation of a stenosis. Similar factors probably contribute to the fact that the operator tends to underestimate mild stenoses and to overestimate mild stenoses. When gauging a severe stenosis, cardiologists are still used to speak of a 90% stenosis, which is actually often a misnomer. Indeed, in a 3-mm artery, a 90% DS corresponds to a 99% area reduction that is not compatible with Thrombolysis In Myocardial Infarction grade 3 flow, stable angina, and a normal segmental wall motion in the absence of collaterals.

Influence of Risk Factors

This study indicates a weaker correlation between angiography and FFR with accumulating risk factors, in particular with diabetes mellitus. Risk factors are associated with diffuse epicardial atherosclerosis and with microvascular disease that may blur the relation between FFR and the angiographic appearance. In the presence of diffuse epicardial disease, the percent DS will tend to be underestimated because both stenotic segment and reference segment are infiltrated by atherosclerosis. On the other hand, microvascular dysfunction will lead to a lesser degree of vasodilation, and in turn to a reduced hyperemic flow and a higher FFR. From a clinical point of view, the present results indicate that the more the risk factors, the more both FFR and angiography together are needed to understand myocardial circulation in individual patients and for optimal clinical decision-making.

We established a weaker correlation with the accumulation of risks factors between angiographic assessments of coronary stenosis compared with FFR. This might be related to the influence of microcirculation disease in patients with risks factors compared with those without. It is noteworthy that for comparable coronary stenosis assessed with angiography FFR was significantly different according to the presence of age-sex and diabetes mellitus. Those factors seem to be involved in coronary microvascular disease. The impact of diabetes mellitus on FFR seems to significantly increase the FFR value compared with a similar stenosis in patients without diabetes mellitus. This study confirms that VE and QCA are both limited to assess functional significance of coronary stenosis. Moreover, more patients had risk factors; less reliability of VE and QCA is present; and more FFR evaluation is needed.

Table 3. Clinical and Angiographic Characteristics of Diabetic Versus Nondiabetic Patients

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Diabetic Patients</th>
<th>Nondiabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>97</td>
<td>1007</td>
<td>0.34</td>
</tr>
<tr>
<td>Age, y</td>
<td>65 (58, 72)</td>
<td>67 (58, 75)</td>
<td>0.82</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>67 (69)</td>
<td>707 (70)</td>
<td>0.02</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>27.8 (25.5, 31.5)</td>
<td>26.4 (24.4, 29.7)</td>
<td>0.005</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>60 (62)</td>
<td>566 (56)</td>
<td>0.34</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>75 (77)</td>
<td>636 (63)</td>
<td>0.005</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>42 (43)</td>
<td>447 (44)</td>
<td>0.92</td>
</tr>
<tr>
<td>Family history of coronary artery disease, n (%)</td>
<td>15 (15)</td>
<td>69 (7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angiographic characteristics</th>
<th>Diabetic Patients</th>
<th>Nondiabetic Patients</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions, n</td>
<td>123</td>
<td>1,222</td>
<td></td>
</tr>
<tr>
<td>Diameter stenosis by visual estimation, %</td>
<td>50 (50, 60)</td>
<td>50 (40, 65)</td>
<td>0.24</td>
</tr>
<tr>
<td>Diameter stenosis by quantitative coronary analysis, %</td>
<td>51 (38, 61)</td>
<td>49 (39, 60)</td>
<td>0.78</td>
</tr>
<tr>
<td>Reference diameter, mm</td>
<td>2.7 (2.2, 3.2)</td>
<td>2.7 (2.3, 3.2)</td>
<td>0.87</td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>1.4 (1.1, 1.6)</td>
<td>1.4 (1.0, 1.7)</td>
<td>0.62</td>
</tr>
<tr>
<td>Lesion length, mm</td>
<td>12.3 (9.1, 15.2)</td>
<td>12.0 (9.0, 15.2)</td>
<td>0.25</td>
</tr>
<tr>
<td>Fractional flow reserve</td>
<td>0.83 (0.76, 0.90)</td>
<td>0.81 (0.73, 0.88)</td>
<td>0.013</td>
</tr>
<tr>
<td>Left ventricular ejection fraction, %</td>
<td>65 (54, 82)</td>
<td>71 (61, 80)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Figure 4. Receiver operating characteristic curves for diameter stenosis by visual estimation (DSVE) in diabetic and nondiabetic patients. AUC indicates area under the curve.
Limitations

Many limitations have to be considered. First, in the present study cohort, there is a relatively low incidence of diabetes mellitus (9%) when compared with the classical 25% to 30% incidence in most percutaneous coronary intervention trials. This is likely related to the fact that many diabetic patients were not included when lesions were not suitable for QCA analysis such as diffusely diseased coronary lesions or sequential lesions which might impact the hemodynamic evaluation assessed with FFR and diabetic patients with previous coronary artery bypass graft were therefore excluded. Lesion characteristics between diabetic patients and nondiabetic patients are not significantly different, which allow a good reliability of our results. Second, this is a retrospective analysis from a single center database. There were several different operators to perform FFR measurements and to assess the lesion by VE and several technicians who performed the QCA analysis. Nevertheless, it represents real-world clinical practice in which no core laboratory is involved.

Third, we did not perform propensity matched or multivariate analyses because of the relatively low number of diabetic patients.

Conclusions

This study confirms the weak correlation between angiographic metrics and FFR and indicates that, despite its subjection, VE is more accurate in predicting physiology than QCA. The presence of risk factors markedly blur this relationship: the more risk factors, the weaker the potential of angiography to assess physiology, particularly so in diabetics. In these patients—even more than in others—a combined angiographic and functional approach is mandated for optimal clinical decision-making about revascularization.

Disclosures

Drs De Bruyne and Barbato report that their institution receives grant support and consulting fees on their behalf from St. Jude Medical, Opsens, and Boston Scientific. Dr Toth reports receiving consulting fee from St. Jude Medical. The other authors report no conflicts.

References

CLINICAL PERSPECTIVE

Fractional flow reserve is an invasive index quantifying the ratio of maximal myocardial flow with and without epicardial stenosis and has become the standard of reference for coronary stenosis severity. Nevertheless, the majority of decisions about treatment in patients with coronary artery disease are based on the angiographic diameter stenosis. In the present work, we compare the diameter stenosis obtained by visual estimate and by quantitative coronary angiography to fractional flow reserve. We show that the diagnostic performance of both visual estimate and quantitative coronary angiography is poor, but that visual estimate performs slightly better than quantitative coronary angiography. In addition, the diagnostic performance of diameter stenosis decreases as risk factors accumulate. This is particularly the case in diabetic patients.
Visual and Quantitative Assessment of Coronary Stenoses at Angiography Versus Fractional Flow Reserve: The Impact of Risk Factors

Julien Adjedj, Panagiotis Xaplanteris, Gabor Toth, Angela Ferrara, Mariano Pellicano, Giovanni Ciccarelli, Vincent Floré, Emanuele Barbato and Bernard De Bruyne

Circ Cardiovasc Imaging. 2017;10:
doi: 10.1161/CIRCIMAGING.117.006243

Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/10/7/e006243

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org//subscriptions/