Inflammation, Endothelial Permeability, and the Vulnerable Plaque

The past 10 to 15 years have witnessed a tremendous interest in developing and validating noninvasive imaging techniques aimed at quantifying features of atherosclerotic plaque vulnerability in humans, most notably plaque inflammation. Among these, magnetic resonance imaging (MRI) with iron oxide nanoparticles has been widely investigated over the years as a mean to detect this feature of high-risk plaques.1

Iron Oxide Nanoparticles Imaging of Plaque Inflammation

Iron oxide nanoparticles are particles containing an iron oxide core. Based on their size, they are subdivided into several types, better suited for different applications (eg, intravascular versus tissue imaging).2 Their tissue accumulation causes local magnetic field inhomogeneities that can be measured by MRI.2 Alternatively, iron oxides (such as, the dextran-coated cross-linked iron oxide nanoparticles [CLIO], used in this work)2 can be labeled with radioisotopes or fluorophores and functionalized as multimodality imaging agents detectable by positron emission tomography or near-infrared fluorescence (NIRF) imaging, alone or in combination.3 Iron oxides can be used as non-targeted agents, avidly phagocytized by inflammatory cells and cells of the reticuloendothelial system,2 or can be labeled to target and image specific molecules involved in disease processes (some examples in atherosclerosis are iron oxides targeted to oxidation-specific epitopes or to adhesion molecules on endothelial cells).4 Although targeted and functionalized nanoparticles are typically used in animal models, some nontargeted iron oxides are commercially available. Ferumoxtran-10 and ferumoxytol, an agent currently approved only for the treatment of iron-deficient anemia in patients with chronic kidney disease, are ultrasmall superparamagnetic iron oxides that are currently or have been previously clinically approved and whose use has been investigated to track plaque inflammation.5 The use of these and other iron oxides for preclinical and clinical imaging of cardiovascular disease has been described in hundreds of publications, of which we give some examples. In several studies, uptake of ferumoxtran-10 was demonstrated in the symptomatic and contralateral asymptomatic carotid artery of patients with carotid5 and coronary artery disease.6 No correlation was found between ferumoxtran-10 uptake and carotid stenosis.7 The ATHROMA study (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) showed a reduction in ferumoxtran-10 uptake in the human carotid arteries after 12 weeks of treatment with high dose (80 mg/d) but not low (10 mg/d) dose atorvastatin,10 suggestive of a reduction in plaque inflammation. Preclinical studies in animal models have offered further insights into the role of iron oxides for plaque imaging. A lower accumulation of P904, an ultrasmall superparamagnetic iron oxide particle with fast blood clearance, was shown in aortic plaques of atherosclerotic mice after treatment with irbesartan.11 P904 accumulation correlated with ΔT2* values and with macrophage-covered area by immunohistological analysis.11 In rabbits, both ferumoxtran-10 and ferumoxytol12 were found to accumulate in aortic plaques. In hereditary hyperlipidemic rabbits, a low endothelial shear stress (calculated using computational fluid dynamics of computed tomographic images) and P904 accumulation assessed by MRI were found to be independent predictors of plaque progression.13 A different study using dextran-coated monocrystalline iron oxide nanoparticles demonstrated vessel wall accumulation in a similar rabbit model, which correlated with plaque macrophages content, and was reduced on regression of plaque inflammation after treatment with rosuvastatin.14 Although iron oxides have been widely used in these studies as macrophage imaging agents, as already mentioned in the article by Stein-Merlob et al15 in this issue of Circulation: Cardiovascular Imaging, some animal studies have raised questions on their pattern of deposition within the plaque and their cellular specificity. As an additional example, a murine study16 showed a reduction in ferumoxtran-10 uptake, rather than macrophages content, after treatment with a p38 mitogen-activated protein kinases inhibitor. Another study in rabbits17 showed that 15 nm fractionated, but not nonfractionated, feridex (a superparamagnetic iron oxide) gets deposited in atherosclerotic plaques in this model, thereby suggesting that iron oxides particle size should be further investigated to optimize plaque macrophages targeting.
Investigating the Intraplaque and Cellular Distribution of Iron Oxides: CLIO-CyAm7 Nanoparticles

In this article, Stein-Merlob et al.15 use a well-validated rabbit model of atherosclerosis to evaluate the intraplaque and cellular uptake of a near-infrared fluorophore–labeled (CyAm7) dextran-coated nanoparticle (CLIO-CyAm7). A total of 31 rabbits were included in the study. Nine animals were injected with either CLIO-CyAm7 (n=6) or saline (n=3) and euthanized 24 hours after injection. In these animals, ex vivo macroscopic NIRF demonstrated increased CLIO-CyAm7 deposition in rabbit aortic plaques compared with control areas, such as the uninjured renal arteries (signal-to-noise ratio, 18.1±11.3 versus 10.64±1.2; \(P=0.03\)). Ex vivo fluorescence microscopy of the same samples demonstrated a nonhomogeneous circumferential nanoparticle distribution in atheromas. Analysis of the nanoparticles cellular distribution revealed accumulation in plaque macrophages, smooth muscle cells, and endothelial cells. Preferential accumulation was observed in the superficial tunica intima in 67% of the animals, despite the presence of these cell types deeper into the plaque. This characteristic distribution of nanoparticles within the plaque suggests that restricted diffusion may also play a role in their pattern of deposition. In the remaining 33% of animals, the authors observed nanoparticles accumulation deeper within the plaque. Histological examinations demonstrated evidence of neovascularization within these deeper regions, thereby pointing to a possible role of the disrupted endothelial barrier in facilitating nanoparticles extravasation.

Endothelial Permeability, CLIO-CyAm7 Accumulation, and Arterial Thrombosis

To test this hypothesis, a group of 7 rabbits was co-injected with CLIO-CyAm7 and Evans blue, a fluorescent albumin-binding dye that is known to accumulate in areas of increased permeability. Evans blue and CLIO-CyAm7 plaque accumulation were found to be highly correlated (\(r=0.64; P=0.003\)). Based on these findings, the authors proceeded to further investigate the possible relationship between increased plaque permeability and atheroma CLIO-CyAm7 deposition as predictive traits of plaques prone to thrombosis. An additional 15 rabbits were injected with CLIO-CyAm7 and imaged 24 hours afterward with intravascular in vivo NIRF, which confirmed CLIO-CyAm7 deposition in atheromas identified by intravascular ultrasound. After imaging, rabbits underwent a well-validated triggering procedure with intraperitoneal injection of viper venen and histamine to induce arterial thrombosis. Follow-up intravascular ultrasound after triggering revealed the formation of thrombotic areas in 67% of the animals, confirmed by histology. Quantitative analysis of pre-triggering intravascular in vivo NIRF revealed higher CLIO-CyAm7 accumulation in thrombosis versus nonthrombotic plaques at the postrigger intravascular ultrasound. Receiver operating characteristic curves analysis revealed that the positive predictive value of pretriggering CLIO-CyAm7 aortic deposition for plaque thrombosis was 59.4% (confidence interval, 40.6%–76.3%) and the negative predictive value was 84.0% (confidence interval, 63.9%–95.4%).

Imaging Inflammation and Endothelial Permeability as Predictors of Atherothrombosis: Current Status and Future Directions

This important study by Stein-Merlob et al.15 sheds some light into the intraplaque distribution and cellular specificity of multimodality-functionalized CLIOs. CLIOs plaque distribution is found to be inhomogeneous along the plaque luminal circumference and preferentially around the superficial intima. Accumulation within deeper plaque regions is colocalized with plaque neovessels in these same areas. Furthermore, ex vivo investigation demonstrates a relationship between plaque endothelial permeability and nanoparticles accumulations and a predictive value of CLIO-CyAm7 deposition for arterial thrombosis in the rabbit model. Importantly, the authors demonstrated feasibility of using intravascular NIRF to quantify CLIO-CyAm7 accumulation in vivo in a vessel of comparable size to the human coronary arteries. Despite these findings indicate that in the near future, in vivo NIRF, alone or in combination with other intravascular imaging modality, may further enhance our ability to characterize atheromas in this challenging vascular territory.

The mechanisms of uptake and intraplaque distribution of nanoparticles used for diagnostic or theranostic purposes, including but not limited to iron oxides, are the subject of active investigation. A similar dependency of nanoparticles accumulation to plaque permeability has been previously demonstrated for another near-infrared fluorophore Cy7-labeled long circulating liposomal nanoparticles also in the rabbit model.19 In this case, nanoparticles vessel wall uptake was found to correlate with both ex vivo NIRF imaging with Evans blue and the in vivo quantification of endothelial permeability with dynamic contrast-enhanced MRI. Interestingly, in this specific case, the correlation was stronger with nanoparticles accumulation half an hour after injection and was found to weaken and then disappear at 6 and 24 hours after injection, reflecting the particles gradual diffusion within the plaque from the luminal side.

The predictive value of endothelial permeability for plaque thrombosis has also been recently investigated in rabbits using in vivo T1 mapping with MRI after injection of a gadolinium-based, albumin-binding contrast agent, performed pre- and post-triggering to induce atherothrombosis.20 Similarly to what is presented here, the authors found that rupture-prone plaques are characterized by increased endothelial permeability before triggering. Receiver operating characteristic analysis revealed that this parameter was highly predictive of plaque thrombosis in the post-trigger scans.

Here, CLIOs plaque uptake is shown to depend on both endothelial permeability and internalization by plaque macrophages and other cells type, making its predictive value for arterial thrombosis potentially more complex to interpret. New discoveries on the relative contributions of endothelial dysfunction, plaque neovascularization, permeability, and inflammation to atherogenesis will allow us to better understand the predictive value of iron oxides plaque accumulation for vulnerability, thrombosis, rupture, and cardiovascular events. In the pre-clinical arena, the flexibility to functionalize
these particles into multimodality agents (as shown here) will allow gathering tremendous mechanistic insights on their plaque- and cell-targeting properties in the context of atheroma progression or regression on treatment. This information will be crucial to understand the added value and complementary information of plaque iron oxides imaging in humans in comparison with the other clinical imaging techniques available to characterize plaque vulnerability.1,19,20

Sources of Funding
We acknowledge National Heart, Lung, and Blood Institute (NHLBI) R01 HL071021, NHLBI R01 HL128056, and National Institute of Biomedical Imaging and Bioengineering (NIBIB) R01 EB009638 from the National Institutes of Health (Dr Fayad) and 16SGD27250090 from the American Heart Association (Dr Fayad).

Disclosures
None.

References

Key Words: Editorials ▪ atherosclerosis ▪ carotid stenosis ▪ coronary artery disease ▪ dextrans
Intraplaque and Cellular Distribution of Dextran-Coated Iron Oxide Fluorescently Labeled Nanoparticles: Insights Into Atherothrombosis and Plaque Rupture
Claudia Calcagno and Zahi A. Fayad

Circ Cardiovasc Imaging. 2017;10:
doi: 10.1161/CIRCIMAGING.117.006533
Circulation: Cardiovascular Imaging is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-9651. Online ISSN: 1942-0080

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circimaging.ahajournals.org/content/10/5/e006533

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Cardiovascular Imaging can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Cardiovascular Imaging is online at:
http://circimaging.ahajournals.org/subscriptions/