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maximal without progression. Although aging is associated with 
valve thickening,36 lack of increase in a control group of compa-
rable age, sex, and follow-up time indicates that this is not a likely 
explanation for the changes observed early post-MI.

The capacity for MV remodeling in functional MR has been 
demonstrated previously.17–19,23,24,26,27,35 While active valve expan-
sion can be seen as adaptive, excessive remodeling can lead to 
fibrosis with increased thickness, decreased mobility, and poten-
tially more MR because effective closure requires systolic expan-
sion and flexibility.26 Although differences between the late-MI 
and control groups could be related to other comorbidities, the 
evolution of changes in the early-MI cohort and the large-animal 
study are consistent, with changes beginning only after MI, mainly 
in the early period, as the late-MI group showed stable thickness.

Mechanistic Considerations
Ischemic MR is the complex result of mechanical stretch in an 
ischemic environment with subsequent heart failure–related 

humoral activation. A previous study from our group demon-
strated that mechanical stretch alone from papillary muscle 
displacement causes active valve enlargement.19 In the experi-
mental portion of the current study, we show that an apical 
MI without papillary muscle involvement also triggers MV 
alterations. Importantly, strong TGF-β staining post-MI was 
not observed in the stretch-only model, suggesting a specific 
role for the ischemic environment on MV remodeling. While 
MR itself could contribute to the observed changes through 
increased turbulence and shear stress,34,35 the animal cohort 
showed a cluster of histological changes in the absence of MR.

Activation of renin–angiotensin system is well known 
post-MI,43 and angiotensin II can trigger TGF-β expression in 
the heart,44–46 with subsequent collagen deposition and extra-
cellular matrix remodeling. Our observations suggest that 
valve leaflets can be involved in the global post-MI remodel-
ing, and increased TGF-β likely plays a role in the observed 
leaflet changes (Figure 8). Although our clinical study was not 
primarily designed to assess the effect of medication on MV 
thickness, the observed relation between angiotensin-con-
verting enzyme inhibitor/angiotensin receptor blockers doses 
and leaflet thickness post-MI deserves attention because it is 
consistent with TGF-β involvement: renin–angiotensin sys-
tem blockade is known to inhibit profibrotic effects of TGF-β 
in various organs,47,48 including blood vessels and myocar-
dium.49,50 Our data suggest a possible effect of TGF-β on MV 
remodeling, which could represent a pharmacological target. 
Although we cannot directly link MR to these histological 
changes in this experimental work, these observations war-
rant further investigations because this could be a first step 
toward medical approaches targeting leaflet fibrosis to prevent 
ischemic MR.

Clinical Significance of Increased Leaflet Thickness
This study challenges the concept that ischemic MR is exclu-
sively related to LV remodeling. It is reasonable to suggest 
that disturbed extracellular matrix can change the mechanical 
properties of the valve, increasing its stiffness.23,26 This can 
limit MV closure by decreasing systolic expansion, limiting 
flexible leaflet bending, and potentially decreasing adaptive 
valve growth as compensatory enlargement is attenuated 
in these patients.18,21 All MI patients had the substrates for 

Figure 7. Left, Molecular histopathology showing positive staining 
for CD31 and α-smooth muscle actin (α -SMA) at and beneath the 
atrial endothelial border consistent with endothelial–mesenchymal 
transformation (EMT) post–myocardial infarction (MI). Top right, 
Flow cytometry showing increase in endothelial cells coexpress-
ing α-SMA in post-MI valves vs sham. Bottom right, Strong 
staining for transforming growth factor-β  (TGF-β) in post-MI valve.

Figure 8. Proposed mechanisms for post–myocardial infarction (MI) adverse lea�et remodeling. Endothelial-to-mesenchymal transforma-
tion creates more interstitial cells, and transforming growth factor-β (TGF-β) triggers collagen deposition.
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ischemic MR: decreased ejection fraction, inferoposterior MI, 
and MV tethering. However, not all of them had significant 
MR, suggesting other variables in the pathogenesis of MR. 
Leaflet thickness was significantly associated with MR, and in 
the evolving early-MI group, increased leaflet thickness was 
associated with MR progression.

Limitations
The human data are retrospective, and unknown factors not 
accounted for could have explained differences in thickness 
between groups, but not likely within the early-MI group over 
time. MR quantification can change according to loading con-
ditions. Our population was limited to preselected patients 
(inferior MI and leaflet tethering) more likely to have isch-
emic MR. Difference in individual follow-up timing, absence 
of 3D valve metrics and relatively small sample size are 
other limitations. Noninvasive ways to measure fibrosis and 
biomechanical properties of cardiac valves are limited, but a 
finite-element model previously demonstrated that increased 
thickness can impair coaptation.26 Although leaflet thickness 
was assessed noninvasively in the clinical study, our protocol 
(averaging 12 measures/patient) showed good reproducibility 
and correlated well with previous studies36; leaflet thicken-
ing post-MI was confirmed by pathology in the sheep study. 
Despite small sample size in the animal study, observed dif-
ferences were consistent and highly significant. Our animal 
protocol included apical MI without MR (contrasting with 
the clinical study: inferior MI with high ischemic MR preva-
lence); this was important to demonstrate that the observed 
leaflet changes are not limited to inferior MI or MR itself. 
Interestingly, decreased diastolic excursion paralleled the 
increase in thickness post-MI. Although this can be attributed 
to decreased cardiac output or diastolic tethering,40 intrinsic 
leaflet changes could also explain this phenomenon in part and 
could be explored in future biomechanical studies.

Conclusion
MV undergo multiple changes post-MI. Excessive valve 
remodeling can result in maladaptive fibrosis, suggesting an 
organic component in ischemic MR. The role of TGF-β and 
renin–angiotensin system to modulate this remodeling merits 
exploration.
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CLINICAL PERSPECTIVE
Ischemic mitral regurgitation is generally considered functional: normal leaflets unable to close properly in a dilated and distorted 
left ventricle. However, recent experimental work in animal models suggested leaflet abnormalities potentially contributing to 
functional mitral regurgitation. In this article, we compare the progression of mitral valve thickness in 3 groups of patients: those 
with (1) recent and (2) remote inferior myocardial infarction and (3) normal controls. We show that progressive mitral valve 
thickening occurs early after myocardial infarction and is associated with later mitral regurgitation. In an associated animal 
experiment, we demonstrate mitral valve thickening even after a limited apical myocardial infarction, with evidence of fibrotic 
remodeling and strong presence of transforming growth factor-β in the leaflets. This clinical and experimental work suggests an 
organic component to ischemic mitral regurgitation and suggests mitral leaflet remodeling as a potential therapeutic target.
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SUPPLEMENTAL MATERIAL 

 

1) Supplemental Methods : 

Detailed experimental protocol: Six adult Dorsett hybrid sheep (weight>45kg) were loaded for 3 

days with Amiodarone (200mg orally/day), then anesthetized (propofol, 1 mg/kg IV), intubated 

and ventilated at 15 ml/kg with 2% Isoflurane-oxygen adjusted by blood-oxygen and CO2 

monitoring. Animals prophylactically received Glycopyrrolate (0.4mg intravenously), Cephazolin 

(0.5gm intravenously) and Amiodarone (150mg intravenous drip) during surgery, and 

intravenous 0.9% saline solution as needed. After sterile left thoracotomy, an epicardial 

echocardiography was performed and the distal left anterior descending coronary artery was 

ligated, avoiding infero-posterior infarction and potential ischemic mitral regurgitation by 

increased papillary muscle tethering over time. All animals were followed for 8 weeks and 

sacrificed after left thoracotomy allowing repeated high-quality epicardial echo imaging. After 

sacrifice the mitral valve was harvested. These sheep were compared to a group of 6 normal 

sheep without MI, who underwent a sham surgery. Mitral valve tissue harvesting: In a sterile 

manner and under irrigation of cooled phosphate buffered saline (PBS), sheep hearts were 

harvested, mitral valve anterior and posterior leaflets were dissected and divided for 

histopathology (frozen in OCT compound and stored at -80º C) and cell isolation and flow-

cytometry (transported fresh in cooled physiologic collecting medium). These studies conform 

to NIH guidelines for animal care and have Institutional Animal Care Committee approval. 

Echocardiography: Echocardiography data were collected epicardially using high-frequency 2D 

and 3D (S5, X3) probes and a Philips iE33 scanner (Andover, MA). Full data sets were acquired in 

standardized planes at baseline and before sacrifice. MR presence or absence was assessed by 

color flow Doppler and vena contracta width. Data were digitally stored for offline analysis using 



Xcelera and QLAB 5.1 (Philips, Andover, MA), and the custom software Omni4D (MD 

Handschumacher).  

Histopathological analyses:  MV leaflets were dissected and 6µm cryo-sections were cut and 

stained for overall morphology using hematoxylin and eosin. Leaflet thickness was measured by 

microscopy in ten thickest areas across the midportion of the leaflets. Masson trichrome 

staining assessed collagen accumulation. Immunohistochemistry was performed with the avidin-

biotin-peroxidase method as previously described 54. Endothelial cells (EC) were identified using 

anti-CD31 antibody (Santa Cruz Biotechnology). The activated valvular interstitial cell (VIC) 

phenotype was determined by α-smooth muscle actin ([anti-α-SMA]; clone 1A4; Sigma))55-57. 

Immunofluorescence double labeling was done to confirm co-expression of CD31 and α-SMA in 

the same cells. To explore mechanisms of cellular changes, leaflet sections were immunostained 

with anti-TGF-β1 (R&D Systems) to detect latent and activated protein58, 59.  

MV cell analysis: Valve tissue was minced into 1mm x 1mm pieces and incubated with Cell 

Dissociation Buffer (Invitrogen), an enzyme-free, EDTA-containing solution developed for flow 

cytometric analysis, for 4-minutes at 37 C at a specific tissue/volume ratio to obtain a single-cell 

suspension of endothelial and interstitial cells. Flow cytometry was used to quantify valvular 

cells transitioning between endothelial and mesenchymal phenotypes. ECs were detected and 

quantified using murine anti-sheep CD31 antibody conjugated to fluorescein isothyocyanate 

(FITC, ABD Serotec); endothelial cells (stained positive with the anti-sheep CD31-FITC conjugate) 

transitioning to a mesenchymal phenotype (EMT) were detected using a murine anti-human α-

SMA (clone1A4) conjugated to phycoerythrin (R&D Systems).  Activated valvular interstitial cells 

were CD31-negative, α-SMA positive. Anterior and posterior leaflets were analyzed separately. 
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Univariate comparison of patients with vs without significant 
MR at follow-up 

 
Trace/mild MR 

(n=42) 
MR > mild (n=38) p value 

Age 64±10 72±9 0.001 

Atrial Fibrillation, n(%) 13 (31) 14 (37) 0.64 

Hyperlipemia, n(%) 31 (74) 29 (76) 1.0 

Renal Failure, n(%) 12 (29) 9 (24) 0.8 

Smoker, n(%) 12 (29) 6 (16) 0.19 

Hypertension, n(%) 27 (64) 31 (82) 0.13 

Diabetes, n(%) 11 (26) 13 (34) 0.47 

Echocardiographic variables:    

LVEF(%) 37±13 39±11 0.36 

LVEDD(mm) 54±7 55±8 0.48 

LVESD(mm) 44±8 44±8 1.0 

Tethering Distance, PPM (mm) 43±4 41±5 0.17 

Tethering distance, LPM (mm) 42±4 42±6 0.67 

Left atrium dimension (mm) 39±6 43±5 0.001 

Average thickness(mm) 2.8±0.4 3.2±0.5 0.0006 

Excursion anterior leaflet(degree) 42±15 36±17 0.08 

Excursion posterior leaflet(degree) 42±17 38±17 0.25 

Annulus AP4(mm) 36±3 36±4 0.94 

Annulus AP2(mm) 35±4 37±3 0.06 



3) Supplemental Figures 

 

Supplemental Figure 1 

 

Correlation and Bland-Altman graphs for average thickness interobserver variability.  

 

 

 

 

 

 

 

 

 

 



Supplemental Figure 2 

 

 

Dot plot of average thickness of individual patients at baseline and follow-up in the early-MI 

group. The proportion of early-MI patients with thickness >3 mm increased from 13% at 

baseline to 43% at follow-up (p<0.01). 

 

 

 

 

 

 

 

 



Supplemental Figure 3 

 

Bar graphs showing the average thickness difference (follow-up vs baseline) in individual 

patients (control group: average thickness difference 0.02 ± 0.36 mm; 1/40 patients had >0.5 

mm increase in thickness; early-MI group: average thickness difference: +0.35±0.38 mm, 15/40 

patients had >0.5 mm increase; late-MI group: average thickness difference -0.01±0.27 mm. 

1/40 patients had >0.5 mm increase. In the early-MI group, patients with ≥0.35 mm (median 

value) increase in thickness had MR progression in 55% (12/22) vs 17% (3/18) for those with 

<0.35 mm increase in thickness (p=0.02).   



4) Legends for Supplemental Videos: 

Video 1: Apical 4-chamber view showing a thin and mobile mitral valve early post-myocardial 

infarction. Diastolic opening is preserved. 

Video 2: Apical 4-chamber view of the same patient 3 years later. The valve is significantly 

thicker, and diastolic excursion reduced.  

Video 3: Apical 4-chamber view with color Doppler at follow-up showing severe mitral 

regurgitation. 

 




